These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26620495)

  • 21. Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine.
    Walters JR; Hu D; Itoga CA; Parr-Brownlie LC; Bergstrom DA
    Neuroscience; 2007 Jan; 144(2):762-76. PubMed ID: 17112675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Striatal opioid peptide content in an animal model of spontaneous stereotypic behavior.
    Presti MF; Lewis MH
    Behav Brain Res; 2005 Feb; 157(2):363-8. PubMed ID: 15639187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-dependent alterations in the cortical entrainment of subthalamic nucleus neurons in the YAC128 mouse model of Huntington's disease.
    Callahan JW; Abercrombie ED
    Neurobiol Dis; 2015 Jun; 78():88-99. PubMed ID: 25772440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior.
    Barbier M; Chometton S; Pautrat A; Miguet-Alfonsi C; Datiche F; Gascuel J; Fellmann D; Peterschmitt Y; Coizet V; Risold PY
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15967-15976. PubMed ID: 32571909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversal learning in C58 mice: Modeling higher order repetitive behavior.
    Whitehouse CM; Curry-Pochy LS; Shafer R; Rudy J; Lewis MH
    Behav Brain Res; 2017 Aug; 332():372-378. PubMed ID: 28624316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurophysiological correlates of stereotypic behaviour in a model carnivore species.
    Díez-León M; Kitchenham L; Duprey R; Bailey CDC; Choleris E; Lewis M; Mason G
    Behav Brain Res; 2019 Nov; 373():112056. PubMed ID: 31288059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control.
    Winstanley CA; Baunez C; Theobald DE; Robbins TW
    Eur J Neurosci; 2005 Jun; 21(11):3107-16. PubMed ID: 15978020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease.
    Callahan JW; Abercrombie ED
    J Physiol; 2015 Aug; 593(16):3727-38. PubMed ID: 25952461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states.
    van Albada SJ; Robinson PA
    J Theor Biol; 2009 Apr; 257(4):642-63. PubMed ID: 19168074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy.
    Jourdain VA; Morin N; Grégoire L; Morissette M; Di Paolo T
    J Neurosurg; 2015 Dec; 123(6):1383-93. PubMed ID: 25932606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice.
    Bosch C; Mailly P; Degos B; Deniau JM; Venance L
    Neuroscience; 2012 Jul; 215():31-41. PubMed ID: 22537846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repetitive Behavior in Neurodevelopmental Disorders: Clinical and Translational Findings.
    Whitehouse CM; Lewis MH
    Behav Anal; 2015 Oct; 38(2):163-178. PubMed ID: 26543319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An indirect basal ganglia pathway in anuran amphibians?
    Maier S; Walkowiak W; Luksch H; Endepols H
    J Chem Neuroanat; 2010 Sep; 40(1):21-35. PubMed ID: 20206683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Selective ablation of certain neural pathways by gene transfer using viral vectors: analysis of primate basal ganglia functions by using immunotoxin-mediated tract targeting].
    Takada M
    Brain Nerve; 2013 Jun; 65(6):635-42. PubMed ID: 23735525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benefits of a ketogenic diet on repetitive motor behavior in mice.
    Brady M; Beltramini A; Vaughan G; Bechard AR
    Behav Brain Res; 2022 Mar; 422():113748. PubMed ID: 35038463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder.
    Kim H; Lim CS; Kaang BK
    Behav Brain Funct; 2016 Jan; 12(1):3. PubMed ID: 26790724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavior-related alterations of striatal neurochemistry in a mouse model of stereotyped movement disorder.
    Presti MF; Watson CJ; Kennedy RT; Yang M; Lewis MH
    Pharmacol Biochem Behav; 2004 Mar; 77(3):501-7. PubMed ID: 15006460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic and electrophysiological changes in the basal ganglia of transgenic Huntington's disease rats.
    Vlamings R; Benazzouz A; Chetrit J; Janssen ML; Kozan R; Visser-Vandewalle V; Steinbusch HW; von Hörsten S; Temel Y
    Neurobiol Dis; 2012 Dec; 48(3):488-94. PubMed ID: 22813864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the indirect pathway of the basal ganglia in perceptual decision making.
    Wei W; Rubin JE; Wang XJ
    J Neurosci; 2015 Mar; 35(9):4052-64. PubMed ID: 25740532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repetitive motor behavior: further characterization of development and temporal dynamics.
    Muehlmann AM; Bliznyuk N; Duerr I; Lewis MH
    Dev Psychobiol; 2015 Mar; 57(2):201-11. PubMed ID: 25631623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.