These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3875 related articles for article (PubMed ID: 26620784)

  • 1. GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
    Hess B; Kutzner C; van der Spoel D; Lindahl E
    J Chem Theory Comput; 2008 Mar; 4(3):435-47. PubMed ID: 26620784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy.
    Kohnke B; Kutzner C; Grubmüller H
    J Chem Theory Comput; 2020 Nov; 16(11):6938-6949. PubMed ID: 33084336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct-Space Corrections Enable Fast and Accurate Lorentz-Berthelot Combination Rule Lennard-Jones Lattice Summation.
    Wennberg CL; Murtola T; Páll S; Abraham MJ; Hess B; Lindahl E
    J Chem Theory Comput; 2015 Dec; 11(12):5737-46. PubMed ID: 26587968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple program/multiple data molecular dynamics method with multiple time step integrator for large biological systems.
    Jung J; Sugita Y
    J Comput Chem; 2017 Jun; 38(16):1410-1418. PubMed ID: 27709646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5.
    Abraham MJ; Gready JE
    J Comput Chem; 2011 Jul; 32(9):2031-40. PubMed ID: 21469158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
    Pronk S; Páll S; Schulz R; Larsson P; Bjelkmar P; Apostolov R; Shirts MR; Smith JC; Kasson PM; van der Spoel D; Hess B; Lindahl E
    Bioinformatics; 2013 Apr; 29(7):845-54. PubMed ID: 23407358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.
    Lemkul JA; Roux B; van der Spoel D; MacKerell AD
    J Comput Chem; 2015 Jul; 36(19):1473-9. PubMed ID: 25962472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models.
    Bjelkmar P; Larsson P; Cuendet MA; Hess B; Lindahl E
    J Chem Theory Comput; 2010 Feb; 6(2):459-66. PubMed ID: 26617301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
    Hess B
    J Chem Theory Comput; 2008 Jan; 4(1):116-22. PubMed ID: 26619985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations.
    Hallock MJ; Stone JE; Roberts E; Fry C; Luthey-Schulten Z
    Parallel Comput; 2014 May; 40(5-6):86-99. PubMed ID: 24882911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
    Schulz R; Lindner B; Petridis L; Smith JC
    J Chem Theory Comput; 2009 Oct; 5(10):2798-808. PubMed ID: 26631792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Constant pH Molecular Dynamics in GROMACS.
    Aho N; Buslaev P; Jansen A; Bauer P; Groenhof G; Hess B
    J Chem Theory Comput; 2022 Oct; 18(10):6148-6160. PubMed ID: 36128977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance computing in biology: multimillion atom simulations of nanoscale systems.
    Sanbonmatsu KY; Tung CS
    J Struct Biol; 2007 Mar; 157(3):470-80. PubMed ID: 17187988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Molecular Dynamics with NAMD on the Summit System.
    Acun B; Hardy DJ; Kale LV; Li K; Phillips JC; Stone JE
    IBM J Res Dev; 2018; 62(6):1-9. PubMed ID: 32154805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility.
    Cerutti DS; Duke RE; Darden TA; Lybrand TP
    J Chem Theory Comput; 2009 Sep; 5(9):2322. PubMed ID: 20174456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.
    Marsili S; Signorini GF; Chelli R; Marchi M; Procacci P
    J Comput Chem; 2010 Apr; 31(5):1106-16. PubMed ID: 19824035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 194.