These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26620792)

  • 1. Is the Induction Energy Important for Modeling Organic Crystals?
    Welch GW; Karamertzanis PG; Misquitta AJ; Stone AJ; Price SL
    J Chem Theory Comput; 2008 Mar; 4(3):522-32. PubMed ID: 26620792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials.
    Price SL; Leslie M; Welch GW; Habgood M; Price LS; Karamertzanis PG; Day GM
    Phys Chem Chem Phys; 2010 Aug; 12(30):8478-90. PubMed ID: 20607186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Molecular Crystal Lattice Energies from a Fragment QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization.
    Wen S; Beran GJ
    J Chem Theory Comput; 2011 Nov; 7(11):3733-42. PubMed ID: 26598268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the interplay of inter- and intramolecular hydrogen bonding in conformational polymorphs.
    Karamertzanis PG; Day GM; Welch GW; Kendrick J; Leusen FJ; Neumann MA; Price SL
    J Chem Phys; 2008 Jun; 128(24):244708. PubMed ID: 18601366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Induction Energies for Small Organic Molecules. 2. Development and Testing of Distributed Polarizability Models against SAPT(DFT) Energies.
    Misquitta AJ; Stone AJ; Price SL
    J Chem Theory Comput; 2008 Jan; 4(1):19-32. PubMed ID: 26619976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Polarization Effects on the Relative Energies of the Real and Putative Crystal Structures of Valine.
    Cooper TG; Hejczyk KE; Jones W; Day GM
    J Chem Theory Comput; 2008 Oct; 4(10):1795-805. PubMed ID: 26620182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? 2. Crystal Structure Prediction.
    Karamertzanis PG; Kazantsev AV; Issa N; Welch GW; Adjiman CS; Pantelides CC; Price SL
    J Chem Theory Comput; 2009 May; 5(5):1432-48. PubMed ID: 26609729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio molecular crystal structures, spectra, and phase diagrams.
    Hirata S; Gilliard K; He X; Li J; Sode O
    Acc Chem Res; 2014 Sep; 47(9):2721-30. PubMed ID: 24754304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.
    Pyzer-Knapp EO; Thompson HP; Day GM
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Aug; 72(Pt 4):477-87. PubMed ID: 27484370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Use of Anisotropic Potentials in Modeling Water and Free Energies of Hydration.
    Karamertzanis PG; Raiteri P; Galindo A
    J Chem Theory Comput; 2010 May; 6(5):1590-607. PubMed ID: 26615693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry-dependent distributed polarizability models for the water molecule.
    Loboda O; Ingrosso F; Ruiz-López MF; Szalewicz K; Millot C
    J Chem Phys; 2016 Jan; 144(3):034304. PubMed ID: 26801031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric potential invariants and ions-in-molecules effective potentials for molecular Rydberg states.
    Coy SL; Grimes DD; Zhou Y; Field RW; Wong BM
    J Chem Phys; 2016 Dec; 145(23):234301. PubMed ID: 27984864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic Polarization Energies of Charge Carriers in Organic Molecular Crystals: A Comparative Study with Explicit State-Specific Atomic Polarizability Based AMOEBA Force Field and Implicit Solvent Method.
    Xu T; Wang W; Yin S
    J Chem Theory Comput; 2018 Jul; 14(7):3728-3739. PubMed ID: 29870663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge Distributions of Nitro Groups Within Organic Explosive Crystals: Effects on Sensitivity and Modeling.
    Aina AA; Misquitta AJ; Phipps MJS; Price SL
    ACS Omega; 2019 May; 4(5):8614-8625. PubMed ID: 31459950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Induction Phenomena in Intermolecular Interactions with an Ab Initio Force Field.
    Dehez F; Ángyán JG; Gutiérrez IS; Luque FJ; Schulten K; Chipot C
    J Chem Theory Comput; 2007 Nov; 3(6):1914-26. PubMed ID: 26636194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-atom empirical potential for molecular modeling and dynamics studies of proteins.
    MacKerell AD; Bashford D; Bellott M; Dunbrack RL; Evanseck JD; Field MJ; Fischer S; Gao J; Guo H; Ha S; Joseph-McCarthy D; Kuchnir L; Kuczera K; Lau FT; Mattos C; Michnick S; Ngo T; Nguyen DT; Prodhom B; Reiher WE; Roux B; Schlenkrich M; Smith JC; Stote R; Straub J; Watanabe M; Wiórkiewicz-Kuczera J; Yin D; Karplus M
    J Phys Chem B; 1998 Apr; 102(18):3586-616. PubMed ID: 24889800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in the understanding of drug-receptor interactions, part 2: experimental and theoretical electrostatic moments and interaction energies of an angiotensin II receptor antagonist (C30H30N6(O)3S).
    Soave R; Barzaghi M; Destro R
    Chemistry; 2007; 13(24):6942-56. PubMed ID: 17539033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.