These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 26621085)
1. Electronic Structures of AlGaN2 Nanotubes and AlN-GaN Nanotube Superlattice. Pan H; Feng YP; Lin J J Chem Theory Comput; 2008 May; 4(5):703-7. PubMed ID: 26621085 [TBL] [Abstract][Full Text] [Related]
2. Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties. Pan H; Feng YP; Lin J Nanotechnology; 2008 Mar; 19(9):095707. PubMed ID: 21817689 [TBL] [Abstract][Full Text] [Related]
3. First-principles study of CN carbon nitride nanotubes. Chai G; Lin C; Zhang M; Wang J; Cheng W Nanotechnology; 2010 May; 21(19):195702. PubMed ID: 20400819 [TBL] [Abstract][Full Text] [Related]
4. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes. Camacho-Mojica DC; López-Urías F Sci Rep; 2015 Dec; 5():17902. PubMed ID: 26658148 [TBL] [Abstract][Full Text] [Related]
5. Tuning the indirect-direct band gap transition in the MoS Wu HH; Meng Q; Huang H; Liu CT; Wang XL Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382 [TBL] [Abstract][Full Text] [Related]
6. Investigating the optical properties and electronic structure of gallium phosphide nanotubes doped with arsenic via implementing first-principles calculations. Nawaf S; Rzaij JM; Al-Jobory AA; Motlak M J Mol Model; 2024 Jul; 30(8):243. PubMed ID: 38955842 [TBL] [Abstract][Full Text] [Related]
7. Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. Pan H; Feng YP ACS Nano; 2008 Nov; 2(11):2410-4. PubMed ID: 19206409 [TBL] [Abstract][Full Text] [Related]
8. First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires. Zhang H; Li Y; Tang Q; Liu L; Zhou Z Nanoscale; 2012 Feb; 4(4):1078-84. PubMed ID: 21881662 [TBL] [Abstract][Full Text] [Related]
9. Structure and electronic properties of MoS2 nanotubes. Seifert G; Terrones H; Terrones M; Jungnickel G; Frauenheim T Phys Rev Lett; 2000 Jul; 85(1):146-9. PubMed ID: 10991180 [TBL] [Abstract][Full Text] [Related]
10. Atomic and electronic properties of realizable size single-crystal GaN nanotubes by first principles. Yilmaz H; Singh SP; Marin C; Weiner BR; Morell G J Nanosci Nanotechnol; 2011 Sep; 11(9):7753-61. PubMed ID: 22097483 [TBL] [Abstract][Full Text] [Related]
12. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor. Asadpour M; Jafari M; Asadpour M; Jafari M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934 [TBL] [Abstract][Full Text] [Related]
13. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors. Zhou Z; Zhao J; Chen Y; Schleyer Pv; Chen Z Nanotechnology; 2007 Oct; 18(42):424023. PubMed ID: 21730456 [TBL] [Abstract][Full Text] [Related]
14. First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire. Chang H; In E; Kong KJ; Lee JO; Choi Y; Ryu BH J Phys Chem B; 2005 Jan; 109(1):30-2. PubMed ID: 16850978 [TBL] [Abstract][Full Text] [Related]
16. First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc Liu M; Lu Y; Song J; Ma B; Qiu K; Bai L; Wang Y; Chen Y; Tang Y Molecules; 2024 Jul; 29(14):. PubMed ID: 39064882 [TBL] [Abstract][Full Text] [Related]
17. A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes. Herrera-Carbajal A; Rodríguez-Lugo V; Hernández-Ávila J; Sánchez-Castillo A Phys Chem Chem Phys; 2021 Jun; 23(23):13075-13086. PubMed ID: 34042934 [TBL] [Abstract][Full Text] [Related]
18. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Lu P; Wu X; Guo W; Zeng XC Phys Chem Chem Phys; 2012 Oct; 14(37):13035-40. PubMed ID: 22911017 [TBL] [Abstract][Full Text] [Related]
19. On the electronic and geometric structures of armchair GeC nanotubes: a hybrid density functional study. Rathi SJ; Ray AK Nanotechnology; 2008 Aug; 19(33):335706. PubMed ID: 21730632 [TBL] [Abstract][Full Text] [Related]
20. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube. Kou L; Tang C; Frauenheim T; Chen C J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]