These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26621085)

  • 21. Structure and electronic properties of the double-wall nanotubes constructed from SiO2 nanotubes encapsulated inside zigzag carbon nanotubes.
    Qiao W; Bai H; Zhu Y; Huang Y
    J Phys Condens Matter; 2012 May; 24(18):185302. PubMed ID: 22481241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First-principles calculations of AlN nanowires and nanotubes: atomic structures, energetics, and surface states.
    Zhao M; Xia Y; Liu X; Tan Z; Huang B; Song C; Mei L
    J Phys Chem B; 2006 May; 110(17):8764-8. PubMed ID: 16640433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.
    Li X; Wu X; Zeng XC; Yang J
    ACS Nano; 2012 May; 6(5):4104-12. PubMed ID: 22482995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes.
    Zeng H; Hu H; Leburton JP
    ACS Nano; 2010 Jan; 4(1):292-6. PubMed ID: 20000404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid density functional study of zigzag SiC nanotubes.
    Alam KM; Ray AK
    Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometry, electronic structures and optical properties of phosphorus nanotubes.
    Hu T; Hashmi A; Hong J
    Nanotechnology; 2015 Oct; 26(41):415702. PubMed ID: 26391069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical study of nitride short period superlattices.
    Gorczyca I; Suski T; Christensen NE; Svane A
    J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes.
    Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.
    Bandura AV; Evarestov RA
    J Comput Chem; 2014 Feb; 35(5):395-405. PubMed ID: 24327400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic and electronic properties of single-walled Mo
    Jalil A; Sun Z; Wang D; Wu X
    J Phys Condens Matter; 2018 Apr; 30(15):155305. PubMed ID: 29498354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.
    Sun W; Tan CK; Tansu N
    Sci Rep; 2017 Sep; 7(1):11826. PubMed ID: 28928372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phonon spectra, electronic, and thermodynamic properties of WS
    Evarestov RA; Bandura AV; Porsev VV; Kovalenko AV
    J Comput Chem; 2017 Nov; 38(30):2581-2593. PubMed ID: 28833274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Invariant wide bandgaps in honeycomb monolayer and single-walled nanotubes of IIB-VI semiconductors.
    Ma X; Hu J; Pan B
    Nanotechnology; 2017 Sep; 28(35):355201. PubMed ID: 28636567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphane nanotubes.
    Wen XD; Yang T; Hoffmann R; Ashcroft NW; Martin RL; Rudin SP; Zhu JX
    ACS Nano; 2012 Aug; 6(8):7142-50. PubMed ID: 22747198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemisorption of hydrogen molecules on carbon nanotubes: charging effect from first-principles calculations.
    Zhou B; Guo W; Tang C
    Nanotechnology; 2008 Feb; 19(7):075707. PubMed ID: 21817655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS₂ nanotubes.
    Xiao J; Long M; Li X; Xu H; Huang H; Gao Y
    Sci Rep; 2014 Mar; 4():4327. PubMed ID: 24608863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations.
    Wang Y; Ding Y
    J Phys Condens Matter; 2015 Jun; 27(22):225304. PubMed ID: 25984912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural transition induced by compression and stretching of puckered arsenene nanotubes.
    Quijano-Briones JJ; Fernández-Escamilla HN; Guerrero-Sánchez J; Martínez-Guerra E; Takeuchi N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22467-22474. PubMed ID: 31584057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.