These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 26621871)
1. Soluble CD109 binds TGF-β and antagonizes TGF-β signalling and responses. Li C; Hancock MA; Sehgal P; Zhou S; Reinhardt DP; Philip A Biochem J; 2016 Mar; 473(5):537-47. PubMed ID: 26621871 [TBL] [Abstract][Full Text] [Related]
2. CD109-mediated degradation of TGF-β receptors and inhibition of TGF-β responses involve regulation of SMAD7 and Smurf2 localization and function. Bizet AA; Tran-Khanh N; Saksena A; Liu K; Buschmann MD; Philip A J Cell Biochem; 2012 Jan; 113(1):238-46. PubMed ID: 21898545 [TBL] [Abstract][Full Text] [Related]
3. CD109 release from the cell surface in human keratinocytes regulates TGF-β receptor expression, TGF-β signalling and STAT3 activation: relevance to psoriasis. Litvinov IV; Bizet AA; Binamer Y; Jones DA; Sasseville D; Philip A Exp Dermatol; 2011 Aug; 20(8):627-32. PubMed ID: 21539622 [TBL] [Abstract][Full Text] [Related]
4. The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Bizet AA; Liu K; Tran-Khanh N; Saksena A; Vorstenbosch J; Finnson KW; Buschmann MD; Philip A Biochim Biophys Acta; 2011 May; 1813(5):742-53. PubMed ID: 21295082 [TBL] [Abstract][Full Text] [Related]
5. Identification of CD109 as part of the TGF-beta receptor system in human keratinocytes. Finnson KW; Tam BY; Liu K; Marcoux A; Lepage P; Roy S; Bizet AA; Philip A FASEB J; 2006 Jul; 20(9):1525-7. PubMed ID: 16754747 [TBL] [Abstract][Full Text] [Related]
6. Processing of CD109 by furin and its role in the regulation of TGF-beta signaling. Hagiwara S; Murakumo Y; Mii S; Shigetomi T; Yamamoto N; Furue H; Ueda M; Takahashi M Oncogene; 2010 Apr; 29(15):2181-91. PubMed ID: 20101215 [TBL] [Abstract][Full Text] [Related]
7. CD109 overexpression ameliorates skin fibrosis in a mouse model of bleomycin-induced scleroderma. Vorstenbosch J; Al-Ajmi H; Winocour S; Trzeciak A; Lessard L; Philip A Arthritis Rheum; 2013 May; 65(5):1378-83. PubMed ID: 23436317 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of CD109 in the Epidermis Differentially Regulates ALK1 Versus ALK5 Signaling and Modulates Extracellular Matrix Synthesis in the Skin. Vorstenbosch J; Nguyen CM; Zhou S; Seo YJ; Siblini A; Finnson KW; Bizet AA; Tran SD; Philip A J Invest Dermatol; 2017 Mar; 137(3):641-649. PubMed ID: 27866969 [TBL] [Abstract][Full Text] [Related]
9. CD109 attenuates TGF-β1 signaling and enhances EGF signaling in SK-MG-1 human glioblastoma cells. Zhang JM; Murakumo Y; Hagiwara S; Jiang P; Mii S; Kalyoncu E; Saito S; Suzuki C; Sakurai Y; Numata Y; Yamamoto T; Takahashi M Biochem Biophys Res Commun; 2015 Apr; 459(2):252-258. PubMed ID: 25724945 [TBL] [Abstract][Full Text] [Related]
10. Association of down-regulation of CD109 expression with up-expression of Smad7 in pathogenesis of psoriasis. Liu XX; Feng AP; He YM; Li Y; Wu Y; Lian X; Hu F; Li JW; Tu YT; Chen SJ J Huazhong Univ Sci Technolog Med Sci; 2016 Feb; 36(1):132-136. PubMed ID: 26838754 [TBL] [Abstract][Full Text] [Related]
11. The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-β. Tanabe M; Hosokawa K; Nguyen MAT; Nakagawa N; Maruyama K; Tsuji N; Urushihara R; Espinoza L; Elbadry MI; Mohiuddin M; Katagiri T; Ono M; Fujiwara H; Chonabayashi K; Yoshida Y; Yamazaki H; Hirao A; Nakao S Leukemia; 2022 Mar; 36(3):847-855. PubMed ID: 34743190 [TBL] [Abstract][Full Text] [Related]
12. CD109, a TGF-β co-receptor, attenuates extracellular matrix production in scleroderma skin fibroblasts. Man XY; Finnson KW; Baron M; Philip A Arthritis Res Ther; 2012 Jun; 14(3):R144. PubMed ID: 22694813 [TBL] [Abstract][Full Text] [Related]
14. CD109: a multifunctional GPI-anchored protein with key roles in tumor progression and physiological homeostasis. Mii S; Enomoto A; Shiraki Y; Taki T; Murakumo Y; Takahashi M Pathol Int; 2019 May; 69(5):249-259. PubMed ID: 31219232 [TBL] [Abstract][Full Text] [Related]
15. CD109 Attenuates Bleomycin-induced Pulmonary Fibrosis by Inhibiting TGF-β Signaling. Naoi H; Suzuki Y; Miyagi A; Horiguchi R; Aono Y; Inoue Y; Yasui H; Hozumi H; Karayama M; Furuhashi K; Enomoto N; Fujisawa T; Inui N; Mii S; Ichihara M; Takahashi M; Suda T J Immunol; 2024 Apr; 212(7):1221-1231. PubMed ID: 38334455 [TBL] [Abstract][Full Text] [Related]
16. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Zhou S; da Silva SD; Siegel PM; Philip A Sci Rep; 2019 Nov; 9(1):16317. PubMed ID: 31695056 [TBL] [Abstract][Full Text] [Related]
17. Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing. Vorstenbosch J; Gallant-Behm C; Trzeciak A; Roy S; Mustoe T; Philip A Wound Repair Regen; 2013; 21(2):235-46. PubMed ID: 23438099 [TBL] [Abstract][Full Text] [Related]
18. CD109 regulates in vivo tumor invasion in lung adenocarcinoma through TGF-β signaling. Taki T; Shiraki Y; Enomoto A; Weng L; Chen C; Asai N; Murakumo Y; Yokoi K; Takahashi M; Mii S Cancer Sci; 2020 Dec; 111(12):4616-4628. PubMed ID: 33007133 [TBL] [Abstract][Full Text] [Related]
19. CD109, a negative regulator of TGF-β signaling, is a putative risk marker in diffuse large B-cell lymphoma. Yokoyama M; Ichinoe M; Okina S; Sakurai Y; Nakada N; Yanagisawa N; Jiang SX; Numata Y; Umezawa A; Miyazaki K; Higashihara M; Murakumo Y Int J Hematol; 2017 May; 105(5):614-622. PubMed ID: 28032275 [TBL] [Abstract][Full Text] [Related]
20. Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-β signaling. Tsai YL; Ha DP; Zhao H; Carlos AJ; Wei S; Pun TK; Wu K; Zandi E; Kelly K; Lee AS Proc Natl Acad Sci U S A; 2018 May; 115(18):E4245-E4254. PubMed ID: 29654145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]