BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26623658)

  • 1. Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Nakata H; Fedorov DG; Irle S
    J Phys Chem Lett; 2015 Dec; 6(24):5034-9. PubMed ID: 26623658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method.
    Nishimoto Y; Fedorov DG; Irle S
    J Chem Theory Comput; 2014 Nov; 10(11):4801-12. PubMed ID: 26584367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Chem Phys; 2018 Feb; 148(6):064115. PubMed ID: 29448787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method.
    Nakata H; Nishimoto Y; Fedorov DG
    J Chem Phys; 2016 Jul; 145(4):044113. PubMed ID: 27475354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Comput Chem; 2017 Mar; 38(7):406-418. PubMed ID: 28114730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods.
    Morao I; Heifetz A; Fedorov DG
    Methods Mol Biol; 2020; 2114():143-148. PubMed ID: 32016891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding.
    Vuong VQ; Nishimoto Y; Fedorov DG; Sumpter BG; Niehaus TA; Irle S
    J Chem Theory Comput; 2019 May; 15(5):3008-3020. PubMed ID: 30998360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2018 Feb; 122(6):1781-1795. PubMed ID: 29337557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient.
    Brorsen KR; Minezawa N; Xu F; Windus TL; Gordon MS
    J Chem Theory Comput; 2012 Dec; 8(12):5008-12. PubMed ID: 26593192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials.
    Qian HJ; van Duin AC; Morokuma K; Irle S
    J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method.
    Morao I; Fedorov DG; Robinson R; Southey M; Townsend-Nicholson A; Bodkin MJ; Heifetz A
    J Comput Chem; 2017 Sep; 38(23):1987-1990. PubMed ID: 28675443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex.
    Maity S; Bold BM; Prajapati JD; Sokolov M; Kubař T; Elstner M; Kleinekathöfer U
    J Phys Chem Lett; 2020 Oct; 11(20):8660-8667. PubMed ID: 32991176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A density functional tight binding model with an extended basis set and three-body repulsion for hydrogen under extreme thermodynamic conditions.
    Srinivasan SG; Goldman N; Tamblyn I; Hamel S; Gaus M
    J Phys Chem A; 2014 Jul; 118(29):5520-8. PubMed ID: 24960065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System.
    Nakai H; Sakti AW; Nishimura Y
    J Phys Chem B; 2016 Jan; 120(1):217-21. PubMed ID: 26694784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and accurate fragmentation methods.
    Pruitt SR; Bertoni C; Brorsen KR; Gordon MS
    Acc Chem Res; 2014 Sep; 47(9):2786-94. PubMed ID: 24810424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method.
    Fedorov DG
    J Chem Phys; 2022 Dec; 157(23):231001. PubMed ID: 36550057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.