BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26623994)

  • 1. Germination of Fusarium graminearum Ascospores and Wheat Infection are Affected by Dry Periods and by Temperature and Humidity During Dry Periods.
    Manstretta V; Morcia C; Terzi V; Rossi V
    Phytopathology; 2016 Mar; 106(3):262-9. PubMed ID: 26623994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production.
    Beyer M; Verreet JA; Ragab WS
    Int J Food Microbiol; 2005 Feb; 98(3):233-40. PubMed ID: 15698684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germination of Ascospores of Gibberella zeae after exposure to various levels of relative humidity and temperature.
    Gilbert J; Woods SM; Kromer U
    Phytopathology; 2008 May; 98(5):504-8. PubMed ID: 18943217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Temperature and Moisture on Development of Fusarium graminearum Perithecia in Maize Stalk Residues.
    Manstretta V; Rossi V
    Appl Environ Microbiol; 2016 Jan; 82(1):184-91. PubMed ID: 26475114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Weather Variables on Ascospore Discharge from Fusarium graminearum Perithecia.
    Manstretta V; Rossi V
    PLoS One; 2015; 10(9):e0138860. PubMed ID: 26402063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse.
    Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum.
    Ribas AD; Del Ponte EM; Dalbem AM; Dalla-Lana D; Bündchen C; Donato RK; Schrekker HS; Fuentefria AM
    J Appl Microbiol; 2016 Aug; 121(2):445-52. PubMed ID: 26972421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusarium Head Blight Inoculum: Species Prevalence and Gibberella zeae Spore Type.
    Markell SG; Francl LJ
    Plant Dis; 2003 Jul; 87(7):814-820. PubMed ID: 30812892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascospore release and survival in Sclerotinia sclerotiorum.
    Clarkson JP; Staveley J; Phelps K; Young CS; Whipps JM
    Mycol Res; 2003 Feb; 107(Pt 2):213-22. PubMed ID: 12747333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on growth, wheat head infection, and nivalenol production by Fusarium poae.
    Nazari L; Pattori E; Manstretta V; Terzi V; Morcia C; Somma S; Moretti A; Ritieni A; Rossi V
    Food Microbiol; 2018 Dec; 76():83-90. PubMed ID: 30166194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat.
    Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T
    Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density.
    Clarkson JP; Fawcett L; Anthony SG; Young C
    PLoS One; 2014; 9(4):e94049. PubMed ID: 24736409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes.
    Cowger C; Arellano C
    Phytopathology; 2013 May; 103(5):460-71. PubMed ID: 23252971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 5-n-alkylresorcinol extracts from durum wheat whole grain on the growth of fusarium head blight (FHB) causal agents.
    Ciccoritti R; Pasquini M; Sgrulletta D; Nocente F
    J Agric Food Chem; 2015 Jan; 63(1):43-50. PubMed ID: 25496267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusarium graminearum from expression analysis to functional assays.
    Hallen-Adams HE; Cavinder BL; Trail F
    Methods Mol Biol; 2011; 722():79-101. PubMed ID: 21590414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour of Aspergillus flavus and Fusarium graminearum on rice as affected by degree of milling, temperature, and relative humidity during storage.
    Choi S; Jun H; Bang J; Chung SH; Kim Y; Kim BS; Kim H; Beuchat LR; Ryu JH
    Food Microbiol; 2015 Apr; 46():307-313. PubMed ID: 25475300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between yearly fluctuations in Fusarium head blight intensity and environmental variables: a window-pane analysis.
    Kriss AB; Paul PA; Madden LV
    Phytopathology; 2010 Aug; 100(8):784-97. PubMed ID: 20626282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat.
    Stephens AE; Gardiner DM; White RG; Munn AL; Manners JM
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1571-81. PubMed ID: 18986253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Fusarium infection in wheat heads using a quantitative polymerase chain reaction (qPCR) assay.
    Rossi V; Terzi V; Moggi F; Morcia C; Faccioli P; Haidukowski M; Pascale M
    Food Addit Contam; 2007 Oct; 24(10):1121-30. PubMed ID: 17886184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature on infection, growth, and mycotoxin production by Fusarium langsethiae and F. sporotrichioides in durum wheat.
    Nazari L; Pattori E; Terzi V; Morcia C; Rossi V
    Food Microbiol; 2014 May; 39():19-26. PubMed ID: 24387848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.