BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26624011)

  • 1. Automated Learning of Subcellular Variation among Punctate Protein Patterns and a Generative Model of Their Relation to Microtubules.
    Johnson GR; Li J; Shariff A; Rohde GK; Murphy RF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004614. PubMed ID: 26624011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point process models for localization and interdependence of punctate cellular structures.
    Li Y; Majarian TD; Naik AW; Johnson GR; Murphy RF
    Cytometry A; 2016 Jul; 89(7):633-43. PubMed ID: 27327612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for the automated analysis of subcellular patterns in human protein atlas images.
    Newberg J; Murphy RF
    J Proteome Res; 2008 Jun; 7(6):2300-8. PubMed ID: 18435555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated learning of generative models for subcellular location: building blocks for systems biology.
    Zhao T; Murphy RF
    Cytometry A; 2007 Dec; 71(12):978-90. PubMed ID: 17972315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location proteomics: systematic determination of protein subcellular location.
    Newberg J; Hua J; Murphy RF
    Methods Mol Biol; 2009; 500():313-32. PubMed ID: 19399439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas.
    Li J; Newberg JY; Uhlén M; Lundberg E; Murphy RF
    PLoS One; 2012; 7(11):e50514. PubMed ID: 23226299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel algorithm combining support vector machine with the discrete wavelet transform for the prediction of protein subcellular localization.
    Liang RP; Huang SY; Shi SP; Sun XY; Suo SB; Qiu JD
    Comput Biol Med; 2012 Feb; 42(2):180-7. PubMed ID: 22153357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilabel learning for protein subcellular location prediction.
    Li GZ; Wang X; Hu X; Liu JM; Zhao RW
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):237-43. PubMed ID: 22987129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Location proteomics: a systems approach to subcellular location.
    Murphy RF
    Biochem Soc Trans; 2005 Jun; 33(Pt 3):535-8. PubMed ID: 15916558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a systematics for protein subcelluar location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images.
    Murphy RF; Boland MV; Velliste M
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():251-9. PubMed ID: 10977086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated interpretation of subcellular patterns from immunofluorescence microscopy.
    Hu Y; Murphy RF
    J Immunol Methods; 2004 Jul; 290(1-2):93-105. PubMed ID: 15261574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An incremental approach to automated protein localisation.
    Tscherepanow M; Jensen N; Kummert F
    BMC Bioinformatics; 2008 Oct; 9():445. PubMed ID: 18937856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generative model of microtubule distributions, and indirect estimation of its parameters from fluorescence microscopy images.
    Shariff A; Murphy RF; Rohde GK
    Cytometry A; 2010 May; 77(5):457-66. PubMed ID: 20104579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communicating subcellular distributions.
    Murphy RF
    Cytometry A; 2010 Jul; 77(7):686-92. PubMed ID: 20552685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate molecular dynamics inside cells.
    Weidemann T; Mücksch J; Schwille P
    Curr Opin Struct Biol; 2014 Oct; 28():69-76. PubMed ID: 25126766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics.
    Chen X; Velliste M; Murphy RF
    Cytometry A; 2006 Jul; 69(7):631-40. PubMed ID: 16752421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-derived, three-dimensional generative models of cellular organization.
    Peng T; Murphy RF
    Cytometry A; 2011 May; 79(5):383-91. PubMed ID: 21472848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular localization prediction through boosting association rules.
    Yoon Y; Lee GG
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):609-18. PubMed ID: 21968957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistency and variation of protein subcellular location annotations.
    Xu YY; Zhou H; Murphy RF; Shen HB
    Proteins; 2021 Feb; 89(2):242-250. PubMed ID: 32935893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep generative model of 3D single-cell organization.
    Donovan-Maiye RM; Brown JM; Chan CK; Ding L; Yan C; Gaudreault N; Theriot JA; Maleckar MM; Knijnenburg TA; Johnson GR
    PLoS Comput Biol; 2022 Jan; 18(1):e1009155. PubMed ID: 35041651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.