BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26624804)

  • 1. Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.
    Jin H; Goyal P; Das AK; Gaus M; Meuwly M; Cui Q
    J Phys Chem B; 2016 Mar; 120(8):1894-910. PubMed ID: 26624804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The axial methionine ligand may control the redox reorganizations in the active site of blue copper proteins.
    Ando K
    J Chem Phys; 2010 Nov; 133(17):175101. PubMed ID: 21054068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters.
    Gaus M; Jin H; Demapan D; Christensen AS; Goyal P; Elstner M; Cui Q
    J Chem Theory Comput; 2015 Sep; 11(9):4205-19. PubMed ID: 26575916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN; Matyushov DV
    J Chem Phys; 2008 Apr; 128(15):155106. PubMed ID: 18433287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary condition effects on the dynamic and electric properties of hydration layers.
    Chandramouli B; Zazza C; Mancini G; Brancato G
    J Phys Chem A; 2015 May; 119(21):5465-75. PubMed ID: 25752804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QM/MM study of the nature of the entatic state in plastocyanin.
    Hurd CA; Besley NA; Robinson D
    J Comput Chem; 2017 Jun; 38(16):1431-1437. PubMed ID: 27859435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical calculation of type-1 cu reduction potential: ligand interaction and solvation effect.
    Si D; Li H
    J Phys Chem A; 2009 Nov; 113(46):12979-87. PubMed ID: 19810740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin.
    Olsson MH; Hong G; Warshel A
    J Am Chem Soc; 2003 Apr; 125(17):5025-39. PubMed ID: 12708852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the spectroscopy and dynamics of plastocyanin.
    Robinson D; Besley NA
    Phys Chem Chem Phys; 2010 Sep; 12(33):9667-76. PubMed ID: 20532328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure.
    Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational approaches to structural and functional analysis of plastocyanin and other blue copper proteins.
    De Rienzo F; Gabdoulline RR; Wade RC; Sola M; Menziani MC
    Cell Mol Life Sci; 2004 May; 61(10):1123-42. PubMed ID: 15141299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein strain in blue copper proteins studied by free energy perturbations.
    De Kerpel JO; Ryde U
    Proteins; 1999 Aug; 36(2):157-74. PubMed ID: 10398364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry.
    Díaz-Moreno I; Díaz-Quintana A; Díaz-Moreno S; Subías G; De la Rosa MA
    FEBS Lett; 2006 Nov; 580(26):6187-94. PubMed ID: 17064694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of the structure and electronic circular dichroism spectroscopy of blue copper proteins.
    Do H; Deeth RJ; Besley NA
    J Phys Chem B; 2013 Jul; 117(27):8105-12. PubMed ID: 23773120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-to-metal charge-transfer dynamics in a blue copper protein plastocyanin: a molecular dynamics study.
    Ando K
    J Phys Chem B; 2008 Jan; 112(2):250-6. PubMed ID: 18047310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride.
    Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ
    J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural comparison of the poplar plastocyanin isoforms PCa and PCb sheds new light on the role of the copper site geometry in interactions with redox partners in oxygenic photosynthesis.
    Kachalova GS; Shosheva AC; Bourenkov GP; Donchev AA; Dimitrov MI; Bartunik HD
    J Inorg Biochem; 2012 Oct; 115():174-81. PubMed ID: 22883960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protonation of a histidine copper ligand in fern plastocyanin.
    Hulsker R; Mery A; Thomassen EA; Ranieri A; Sola M; Verbeet MP; Kohzuma T; Ubbink M
    J Am Chem Soc; 2007 Apr; 129(14):4423-9. PubMed ID: 17367139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.