These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26625158)

  • 41. Breakpointer: using local mapping artifacts to support sequence breakpoint discovery from single-end reads.
    Sun R; Love MI; Zemojtel T; Emde AK; Chung HR; Vingron M; Haas SA
    Bioinformatics; 2012 Apr; 28(7):1024-5. PubMed ID: 22302574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Population-based structural variation discovery with Hydra-Multi.
    Lindberg MR; Hall IM; Quinlan AR
    Bioinformatics; 2015 Apr; 31(8):1286-9. PubMed ID: 25527832
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs.
    Eggertsson HP; Kristmundsdottir S; Beyter D; Jonsson H; Skuladottir A; Hardarson MT; Gudbjartsson DF; Stefansson K; Halldorsson BV; Melsted P
    Nat Commun; 2019 Nov; 10(1):5402. PubMed ID: 31776332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of multiple algorithms to reliably detect structural variants in pears.
    Liu Y; Zhang M; Sun J; Chang W; Sun M; Zhang S; Wu J
    BMC Genomics; 2020 Jan; 21(1):61. PubMed ID: 31959124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using the Ensembl genome server to browse genomic sequence data.
    Fernández-Suárez XM; Schuster MK
    Curr Protoc Bioinformatics; 2007 Jan; Chapter 1():Unit 1.15. PubMed ID: 18428779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PeSV-Fisher: identification of somatic and non-somatic structural variants using next generation sequencing data.
    Escaramís G; Tornador C; Bassaganyas L; Rabionet R; Tubio JM; Martínez-Fundichely A; Cáceres M; Gut M; Ossowski S; Estivill X
    PLoS One; 2013; 8(5):e63377. PubMed ID: 23704902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Consensus generation and variant detection by Celera Assembler.
    Denisov G; Walenz B; Halpern AL; Miller J; Axelrod N; Levy S; Sutton G
    Bioinformatics; 2008 Apr; 24(8):1035-40. PubMed ID: 18321888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A variant selection framework for genome graphs.
    Jain C; Tavakoli N; Aluru S
    Bioinformatics; 2021 Jul; 37(Suppl_1):i460-i467. PubMed ID: 34252945
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vcfanno: fast, flexible annotation of genetic variants.
    Pedersen BS; Layer RM; Quinlan AR
    Genome Biol; 2016 Jun; 17(1):118. PubMed ID: 27250555
    [TBL] [Abstract][Full Text] [Related]  

  • 50. svclassify: a method to establish benchmark structural variant calls.
    Parikh H; Mohiyuddin M; Lam HY; Iyer H; Chen D; Pratt M; Bartha G; Spies N; Losert W; Zook JM; Salit M
    BMC Genomics; 2016 Jan; 17():64. PubMed ID: 26772178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms.
    Bartenhagen C; Dugas M
    Brief Bioinform; 2016 Jan; 17(1):51-62. PubMed ID: 25998133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LUMPY: a probabilistic framework for structural variant discovery.
    Layer RM; Chiang C; Quinlan AR; Hall IM
    Genome Biol; 2014 Jun; 15(6):R84. PubMed ID: 24970577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel Genetic Rearrangements Termed "Structural Variation Polymorphisms" Contribute to the Genetic Diversity of Orthohepadnaviruses.
    Fujiwara K; Matsuura K; Matsunami K; Iio E; Nagura Y; Nojiri S; Kataoka H
    Viruses; 2019 Sep; 11(9):. PubMed ID: 31533314
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MUM&Co: accurate detection of all SV types through whole-genome alignment.
    O'Donnell S; Fischer G
    Bioinformatics; 2020 May; 36(10):3242-3243. PubMed ID: 32096823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BatAlign: an incremental method for accurate alignment of sequencing reads.
    Lim JQ; Tennakoon C; Guan P; Sung WK
    Nucleic Acids Res; 2015 Sep; 43(16):e107. PubMed ID: 26170239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Backward genotype-transcript-phenotype association mapping.
    Lee S; Wang H; Xing EP
    Methods; 2017 Oct; 129():18-23. PubMed ID: 28917724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cue: a deep-learning framework for structural variant discovery and genotyping.
    Popic V; Rohlicek C; Cunial F; Hajirasouliha I; Meleshko D; Garimella K; Maheshwari A
    Nat Methods; 2023 Apr; 20(4):559-568. PubMed ID: 36959322
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A decade of structural variants: description, history and methods to detect structural variation.
    Escaramís G; Docampo E; Rabionet R
    Brief Funct Genomics; 2015 Sep; 14(5):305-14. PubMed ID: 25877305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection and visualization of complex structural variants from long reads.
    Stephens Z; Wang C; Iyer RK; Kocher JP
    BMC Bioinformatics; 2018 Dec; 19(Suppl 20):508. PubMed ID: 30577744
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards pan-genome read alignment to improve variation calling.
    Valenzuela D; Norri T; Välimäki N; Pitkänen E; Mäkinen V
    BMC Genomics; 2018 May; 19(Suppl 2):87. PubMed ID: 29764365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.