BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26625261)

  • 1. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.
    Jeunet C; N'Kaoua B; Subramanian S; Hachet M; Lotte F
    PLoS One; 2015; 10(12):e0143962. PubMed ID: 26625261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates.
    Jeunet C; N'Kaoua B; Lotte F
    Prog Brain Res; 2016; 228():3-35. PubMed ID: 27590964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERD modulations during motor imageries relate to users' traits and BCI performances.
    Rimbert S; Lotte F
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():203-207. PubMed ID: 36086209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces.
    Leeuwis N; Paas A; Alimardani M
    Front Hum Neurosci; 2021; 15():634748. PubMed ID: 33889080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity.
    Collazos-Huertas DF; Álvarez-Meza AM; Cárdenas-Peña DA; Castaño-Duque GA; Castellanos-Domínguez CG
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large EEG database with users' profile information for motor imagery brain-computer interface research.
    Dreyer P; Roc A; Pillette L; Rimbert S; Lotte F
    Sci Data; 2023 Sep; 10(1):580. PubMed ID: 37670009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Week-long visuomotor coordination and relaxation trainings do not increase sensorimotor rhythms (SMR) based brain-computer interface performance.
    Botrel L; Kübler A
    Behav Brain Res; 2019 Oct; 372():111993. PubMed ID: 31163204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.
    Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F
    Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the Correlation between the Motor Ability of the Individual Upper Limbs and Motor Imagery Induced Neural Activities.
    Gu B; Wang K; Chen L; He J; Zhang D; Xu M; Wang Z; Ming D
    Neuroscience; 2023 Oct; 530():56-65. PubMed ID: 37652289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling.
    Lee M; Yoon JG; Lee SW
    Front Hum Neurosci; 2020; 14():321. PubMed ID: 32903663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of motor imagery based brain computer interface performance using a reaction time test.
    Darvishi S; Abbott D; Baumert M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2880-3. PubMed ID: 26736893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study.
    Prasad G; Herman P; Coyle D; McDonough S; Crosbie J
    J Neuroeng Rehabil; 2010 Dec; 7():60. PubMed ID: 21156054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.