These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A 2.1-Å-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition. Saito N; Matsuura Y J Mol Biol; 2013 Jan; 425(2):350-64. PubMed ID: 23164569 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the assembly of a nuclear export complex. Matsuura Y; Stewart M Nature; 2004 Dec; 432(7019):872-7. PubMed ID: 15602554 [TBL] [Abstract][Full Text] [Related]
8. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Petosa C; Schoehn G; Askjaer P; Bauer U; Moulin M; Steuerwald U; Soler-López M; Baudin F; Mattaj IW; Müller CW Mol Cell; 2004 Dec; 16(5):761-75. PubMed ID: 15574331 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex. Koyama M; Shirai N; Matsuura Y Cell Rep; 2014 Nov; 9(3):983-95. PubMed ID: 25437554 [TBL] [Abstract][Full Text] [Related]
10. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. Kehlenbach RH; Dickmanns A; Kehlenbach A; Guan T; Gerace L J Cell Biol; 1999 May; 145(4):645-57. PubMed ID: 10330396 [TBL] [Abstract][Full Text] [Related]
11. Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. Bernad R; Engelsma D; Sanderson H; Pickersgill H; Fornerod M J Biol Chem; 2006 Jul; 281(28):19378-86. PubMed ID: 16675447 [TBL] [Abstract][Full Text] [Related]
12. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Etchin J; Sun Q; Kentsis A; Farmer A; Zhang ZC; Sanda T; Mansour MR; Barcelo C; McCauley D; Kauffman M; Shacham S; Christie AL; Kung AL; Rodig SJ; Chook YM; Look AT Leukemia; 2013 Jan; 27(1):66-74. PubMed ID: 22847027 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. Kobayashi J; Matsuura Y J Mol Biol; 2013 Jun; 425(11):1852-1868. PubMed ID: 23541588 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP. Shaikhqasem A; Schmitt K; Valerius O; Ficner R Acta Crystallogr F Struct Biol Commun; 2021 Mar; 77(Pt 3):70-78. PubMed ID: 33682791 [TBL] [Abstract][Full Text] [Related]
15. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. Matsuura Y J Mol Biol; 2016 May; 428(10 Pt A):2025-39. PubMed ID: 26519791 [TBL] [Abstract][Full Text] [Related]
16. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Güttler T; Madl T; Neumann P; Deichsel D; Corsini L; Monecke T; Ficner R; Sattler M; Görlich D Nat Struct Mol Biol; 2010 Nov; 17(11):1367-76. PubMed ID: 20972448 [TBL] [Abstract][Full Text] [Related]
17. A nuclear export sequence promotes CRM1-dependent targeting of the nucleoporin Nup214 to the nuclear pore complex. Hamed M; Caspar B; Port SA; Kehlenbach RH J Cell Sci; 2021 Mar; 134(6):. PubMed ID: 33589493 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for assembly and disassembly of the CRM1 nuclear export complex. Dong X; Biswas A; Chook YM Nat Struct Mol Biol; 2009 May; 16(5):558-60. PubMed ID: 19339972 [TBL] [Abstract][Full Text] [Related]
19. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Askjaer P; Bachi A; Wilm M; Bischoff FR; Weeks DL; Ogniewski V; Ohno M; Niehrs C; Kjems J; Mattaj IW; Fornerod M Mol Cell Biol; 1999 Sep; 19(9):6276-85. PubMed ID: 10454574 [TBL] [Abstract][Full Text] [Related]
20. Nup214 is required for CRM1-dependent nuclear protein export in vivo. Hutten S; Kehlenbach RH Mol Cell Biol; 2006 Sep; 26(18):6772-85. PubMed ID: 16943420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]