These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 26625423)
1. Quantized Attention-Gated Kernel Reinforcement Learning for Brain-Machine Interface Decoding. Wang F; Wang Y; Xu K; Li H; Liao Y; Zhang Q; Zhang S; Zheng X; Principe JC IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):873-886. PubMed ID: 26625423 [TBL] [Abstract][Full Text] [Related]
2. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces Shen X; Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650 [TBL] [Abstract][Full Text] [Related]
3. Intermediate Sensory Feedback Assisted Multi-Step Neural Decoding for Reinforcement Learning Based Brain-Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Yu Z; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2834-2844. PubMed ID: 36219654 [TBL] [Abstract][Full Text] [Related]
4. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces. Zhang X; Libedinsky C; So R; Principe JC; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433 [TBL] [Abstract][Full Text] [Related]
5. Clustering Based Kernel Reinforcement Learning for Neural Adaptation in Brain-Machine Interfaces. Zhang X; Principe JC; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6125-6128. PubMed ID: 30441732 [TBL] [Abstract][Full Text] [Related]
6. Reinforcement Learning based Decoding Using Internal Reward for Time Delayed Task in Brain Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3351-3354. PubMed ID: 33018722 [TBL] [Abstract][Full Text] [Related]
7. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface. Song Z; Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404 [TBL] [Abstract][Full Text] [Related]
8. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240 [TBL] [Abstract][Full Text] [Related]
9. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces. Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173 [TBL] [Abstract][Full Text] [Related]
10. A Weight Transfer Mechanism for Kernel Reinforcement Learning Decoding in Brain-Machine Interfaces. Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3547-3550. PubMed ID: 31946644 [TBL] [Abstract][Full Text] [Related]
11. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics. Prins NW; Sanchez JC; Prasad A J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598 [TBL] [Abstract][Full Text] [Related]
12. A Kernel Reinforcement Learning Decoding Framework Integrating Neural and Feedback Signals for Brain Control. Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083464 [TBL] [Abstract][Full Text] [Related]
13. Neural Decoders Using Reinforcement Learning in Brain Machine Interfaces: A Technical Review. Girdler B; Caldbeck W; Bae J Front Syst Neurosci; 2022; 16():836778. PubMed ID: 36090185 [TBL] [Abstract][Full Text] [Related]
14. Maximum correntropy based attention-gated reinforcement learning designed for brain machine interface. Hongbao Li ; Fang Wang ; Qiaosheng Zhang ; Shaomin Zhang ; Yiwen Wang ; Xiaoxiang Zheng ; Principe JC Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3056-3059. PubMed ID: 28268956 [TBL] [Abstract][Full Text] [Related]
15. State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces. Tan J; Zhang X; Wu S; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083150 [TBL] [Abstract][Full Text] [Related]
16. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface. Zhang P; Chao L; Chen Y; Ma X; Wang W; He J; Huang J; Li Q Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992539 [TBL] [Abstract][Full Text] [Related]
17. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning. Tan J; Shen X; Zhang X; Song Z; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257 [TBL] [Abstract][Full Text] [Related]
18. Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks. Zhang X; Chen S; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4125-4134. PubMed ID: 37792657 [TBL] [Abstract][Full Text] [Related]
19. Covariant Cluster Transfer for Kernel Reinforcement Learning in Brain-Machine Interface. Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3086-3089. PubMed ID: 33018657 [TBL] [Abstract][Full Text] [Related]
20. A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces. Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Sanchez JC; Principe JC Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5402-5. PubMed ID: 24110957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]