These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2662554)

  • 1. A 20-MHz ultrasound system for imaging the intestinal wall.
    Martin RW; Silverstein FE; Kimmey MB
    Ultrasound Med Biol; 1989; 15(3):273-80. PubMed ID: 2662554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-plane ultrasonic needle tracking using a fiber-optic hydrophone.
    Xia W; Mari JM; West SJ; Ginsberg Y; David AL; Ourselin S; Desjardins AE
    Med Phys; 2015 Oct; 42(10):5983-91. PubMed ID: 26429273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies.
    Silverstein FE; Martin RW; Kimmey MB; Jiranek GC; Franklin DW; Proctor A
    Gastroenterology; 1989 Apr; 96(4):1058-62. PubMed ID: 2647573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 45 to 55 MHz needle-based ultrasound system for invasive imaging.
    Lockwood GR; Ryan LK; Foster FS
    Ultrason Imaging; 1993 Jan; 15(1):1-13. PubMed ID: 8328115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new technique for intraluminal hollow organ imaging: three-dimensional ultrasound.
    Cavaye DM; Tabbara MR; Kopchok GE; Laas TE; Cormier F; White RA
    J Laparoendosc Surg; 1991 Oct; 1(5):259-68. PubMed ID: 1932817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoscopic ultrasound probes.
    Kimmey MB; Martin RW; Silverstein FE
    Gastrointest Endosc; 1990; 36(2 Suppl):S40-6. PubMed ID: 2184085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel low-power ultrasound digital preprocessing architecture for wireless display.
    Levesque P; Sawan M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):757-67. PubMed ID: 20211797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic.
    Lee J; Moon JY; Chang JH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo endoscopic multi-beam optical coherence tomography.
    Standish BA; Lee KK; Mariampillai A; Munce NR; Leung MK; Yang VX; Vitkin IA
    Phys Med Biol; 2010 Feb; 55(3):615-22. PubMed ID: 20071753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a 64 channel ultrasonic high frequency linear array imaging system.
    Hu C; Zhang L; Cannata JM; Yen J; Shung KK
    Ultrasonics; 2011 Dec; 51(8):953-9. PubMed ID: 21684568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preclinical Testing of Frequency-Tunable Capacitive Micromachined Ultrasonic Transducer Probe Prototypes.
    Pekař M; Kolen AF; Belt H; van Heesch F; Mihajlović N; Hoefer IE; Szili-Török T; Vos HJ; Bosch JG; van Soest G; van der Steen AFW
    Ultrasound Med Biol; 2017 Sep; 43(9):2079-2085. PubMed ID: 28645796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging.
    Turnbull DH; Starkoski BG; Harasiewicz KA; Semple JL; From L; Gupta AK; Sauder DN; Foster FS
    Ultrasound Med Biol; 1995; 21(1):79-88. PubMed ID: 7754581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 120-MHz ultrasound probe for tissue imaging.
    Yokosawa K; Shinomura R; Sano S; Ito Y; Ishikawa S; Sato Y
    Ultrason Imaging; 1996 Oct; 18(4):231-9. PubMed ID: 9101645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz.
    Umchid S; Gopinath R; Srinivasan K; Lewin PA; Daryoush AS; Bansal L; El-Sherif M
    Ultrasonics; 2009 Mar; 49(3):306-11. PubMed ID: 19110289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of transducer frequency output and receiver band-pass characteristics for improved detection and image characterization of solid breast masses.
    Kelly-Fry E; Morris ST; Jackson VP; Holden RW; Sanghvi NT
    Ultrasound Med Biol; 1988; 14 Suppl 1():143-61. PubMed ID: 2847388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.
    Jensen J; Stuart MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1922-1934. PubMed ID: 27824568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-mode transducers for ultrasound imaging and thermal therapy.
    Owen NR; Chapelon JY; Bouchoux G; Berriet R; Fleury G; Lafon C
    Ultrasonics; 2010 Feb; 50(2):216-20. PubMed ID: 19758673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.