These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26625942)

  • 1. Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica.
    Martelli T; Ravera E; Louka A; Cerofolini L; Hafner M; Fragai M; Becker CF; Luchinat C
    Chemistry; 2016 Jan; 22(1):425-32. PubMed ID: 26625942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of enzyme via one-step template-free formation of stable organic-inorganic capsules: A simple and efficient method for immobilizing enzyme with high activity and recyclability.
    Huang R; Wu M; Goldman MJ; Li Z
    Biotechnol Bioeng; 2015 Jun; 112(6):1092-101. PubMed ID: 25580912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme immobilization in a biomimetic silica support.
    Luckarift HR; Spain JC; Naik RR; Stone MO
    Nat Biotechnol; 2004 Feb; 22(2):211-3. PubMed ID: 14716316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite.
    Miller SA; Hong ED; Wright D
    Macromol Biosci; 2006 Oct; 6(10):839-45. PubMed ID: 17039576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors.
    Yu A; Gentle I; Lu G; Caruso F
    Chem Commun (Camb); 2006 May; (20):2150-2. PubMed ID: 16703137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity.
    Yang S; Jia WZ; Qian QY; Zhou YG; Xia XH
    Anal Chem; 2009 May; 81(9):3478-84. PubMed ID: 19354263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray photoelectron spectroscopy for characterization of bionanocomposite functional materials for energy-harvesting technologies.
    Artyushkova K; Atanassov P
    Chemphyschem; 2013 Jul; 14(10):2071-80. PubMed ID: 23703935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent applications of immobilized biomaterials in herbal analysis.
    Zhang H; Wu ZY; Yang YY; Yang FQ; Li SP
    J Chromatogr A; 2019 Oct; 1603():216-230. PubMed ID: 31277949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic activity of aryl alcohol oxidase immobilized in 3D-mesoporous silicates.
    Kato K; Seelan S; Saito T
    J Biosci Bioeng; 2009 Oct; 108(4):310-3. PubMed ID: 19716520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme immobilization via silaffin-mediated autoencapsulation in a biosilica support.
    Marner WD; Shaikh AS; Muller SJ; Keasling JD
    Biotechnol Prog; 2009; 25(2):417-23. PubMed ID: 19334285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions.
    Gustafsson H; Thörn C; Holmberg K
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):464-71. PubMed ID: 21733664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle.
    Chien LJ; Lee CK
    Biotechnol Bioeng; 2008 Jun; 100(2):223-30. PubMed ID: 18078291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine phenol-lyase and tryptophan indole-lyase encapsulated in wet nanoporous silica gels: Selective stabilization of tertiary conformations.
    Pioselli B; Bettati S; Demidkina TV; Zakomirdina LN; Phillips RS; Mozzarelli A
    Protein Sci; 2004 Apr; 13(4):913-24. PubMed ID: 15044726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silica-encapsulated nanomagnetic particle as a new recoverable biocatalyst carrier.
    Tsang SC; Yu CH; Gao X; Tam K
    J Phys Chem B; 2006 Aug; 110(34):16914-22. PubMed ID: 16927981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR of Immobilized Enzymes.
    Cerofolini L; Ravera E; Fragai M; Luchinat C
    Methods Mol Biol; 2020; 2100():363-383. PubMed ID: 31939136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis.
    Yu CC; Kuo YY; Liang CF; Chien WT; Wu HT; Chang TC; Jan FD; Lin CC
    Bioconjug Chem; 2012 Apr; 23(4):714-24. PubMed ID: 22424277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme stabilization via bio-templated silicification reactions.
    Johnson GR; Luckarift HR
    Methods Mol Biol; 2011; 679():85-97. PubMed ID: 20865390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications.
    Zhao B; Liu X; Jiang Y; Zhou L; He Y; Gao J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1802-14. PubMed ID: 24879595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement in adsorption and catalytic activity of enzymes immobilized on phosphorus- and calcium-modified MCM-41.
    Yasutaka K; Takato Y; Takashi K; Kohsuke M; Hiromi Y
    J Phys Chem B; 2011 Sep; 115(34):10335-45. PubMed ID: 21776977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin-mediated reversible immobilization of enzymes.
    Daunert S; Bachas LG; Schauer-Vukasinovic V; Gregory KJ; Schrift G; Deo S
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):20-7. PubMed ID: 17276043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.