These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 26626081)
21. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease. Francelle L; Galvan L; Gaillard MC; Guillermier M; Houitte D; Bonvento G; Petit F; Jan C; Dufour N; Hantraye P; Elalouf JM; De Chaldée M; Déglon N; Brouillet E Hum Mol Genet; 2015 Mar; 24(6):1563-73. PubMed ID: 25398949 [TBL] [Abstract][Full Text] [Related]
22. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. Cowan CM; Fan MM; Fan J; Shehadeh J; Zhang LY; Graham RK; Hayden MR; Raymond LA J Neurosci; 2008 Nov; 28(48):12725-35. PubMed ID: 19036965 [TBL] [Abstract][Full Text] [Related]
23. Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease. Barry J; Akopian G; Cepeda C; Levine MS J Neurosci; 2018 May; 38(20):4678-4694. PubMed ID: 29691329 [TBL] [Abstract][Full Text] [Related]
25. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease. Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559 [TBL] [Abstract][Full Text] [Related]
26. Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington's disease. Spampanato J; Gu X; Yang XW; Mody I Neuroscience; 2008 Dec; 157(3):606-20. PubMed ID: 18854207 [TBL] [Abstract][Full Text] [Related]
27. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease. Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573 [TBL] [Abstract][Full Text] [Related]
28. Lack of mutant huntingtin in cortical efferents improves behavioral inflexibility and corticostriatal dynamics in Huntington's disease mice. Estrada-Sánchez AM; Blake CL; Barton SJ; Howe AG; Rebec GV J Neurophysiol; 2019 Dec; 122(6):2621-2629. PubMed ID: 31693428 [TBL] [Abstract][Full Text] [Related]
29. Early TNF-Dependent Regulation of Excitatory and Inhibitory Synapses on Striatal Direct Pathway Medium Spiny Neurons in the YAC128 Mouse Model of Huntington's Disease. Chambon J; Komal P; Lewitus GM; Kemp GM; Valade S; Adaïdi H; Al Bistami N; Stellwagen D J Neurosci; 2023 Jan; 43(4):672-680. PubMed ID: 36517241 [TBL] [Abstract][Full Text] [Related]
30. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Pouladi MA; Stanek LM; Xie Y; Franciosi S; Southwell AL; Deng Y; Butland S; Zhang W; Cheng SH; Shihabuddin LS; Hayden MR Hum Mol Genet; 2012 May; 21(10):2219-32. PubMed ID: 22328089 [TBL] [Abstract][Full Text] [Related]
31. Disruption of the nuclear membrane by perinuclear inclusions of mutant huntingtin causes cell-cycle re-entry and striatal cell death in mouse and cell models of Huntington's disease. Liu KY; Shyu YC; Barbaro BA; Lin YT; Chern Y; Thompson LM; James Shen CK; Marsh JL Hum Mol Genet; 2015 Mar; 24(6):1602-16. PubMed ID: 25398943 [TBL] [Abstract][Full Text] [Related]
32. Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Brown TB; Bogush AI; Ehrlich ME Hum Mol Genet; 2008 Oct; 17(20):3095-104. PubMed ID: 18632688 [TBL] [Abstract][Full Text] [Related]
33. Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington's disease-like phenotype in BACHD mice. Petkau TL; Hill A; Connolly C; Lu G; Wagner P; Kosior N; Blanco J; Leavitt BR Hum Mol Genet; 2019 May; 28(10):1661-1670. PubMed ID: 30624705 [TBL] [Abstract][Full Text] [Related]
34. L-DOPA Oppositely Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in Dyskinesia. Suarez LM; Solis O; Aguado C; Lujan R; Moratalla R Cereb Cortex; 2016 Oct; 26(11):4253-4264. PubMed ID: 27613437 [TBL] [Abstract][Full Text] [Related]
35. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Fan J; Gladding CM; Wang L; Zhang LY; Kaufman AM; Milnerwood AJ; Raymond LA Neurobiol Dis; 2012 Mar; 45(3):999-1009. PubMed ID: 22198502 [TBL] [Abstract][Full Text] [Related]
37. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Li L; Fan M; Icton CD; Chen N; Leavitt BR; Hayden MR; Murphy TH; Raymond LA Neurobiol Aging; 2003 Dec; 24(8):1113-21. PubMed ID: 14643383 [TBL] [Abstract][Full Text] [Related]
38. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. Spires TL; Grote HE; Garry S; Cordery PM; Van Dellen A; Blakemore C; Hannan AJ Eur J Neurosci; 2004 May; 19(10):2799-807. PubMed ID: 15147313 [TBL] [Abstract][Full Text] [Related]
39. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease. Murmu RP; Li W; Holtmaat A; Li JY J Neurosci; 2013 Aug; 33(32):12997-3009. PubMed ID: 23926255 [TBL] [Abstract][Full Text] [Related]
40. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease. Cummings DM; Alaghband Y; Hickey MA; Joshi PR; Hong SC; Zhu C; Ando TK; André VM; Cepeda C; Watson JB; Levine MS J Neurophysiol; 2012 Jan; 107(2):677-91. PubMed ID: 22072510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]