These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26626178)

  • 21. Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes.
    Keung W; Boheler KR; Li RA
    Stem Cell Res Ther; 2014 Jan; 5(1):17. PubMed ID: 24467782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes.
    Zhu R; Blazeski A; Poon E; Costa KD; Tung L; Boheler KR
    Stem Cell Res Ther; 2014 Oct; 5(5):117. PubMed ID: 25688759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Matured Human Pluripotent Stem Cell-Derived Cardiomyocytes Form Grafts With Enhanced Structure and Function in Injured Hearts.
    Dhahri W; Sadikov Valdman T; Wilkinson D; Pereira E; Ceylan E; Andharia N; Qiang B; Masoudpour H; Wulkan F; Quesnel E; Jiang W; Funakoshi S; Mazine A; Gomez-Garcia MJ; Latifi N; Jiang Y; Huszti E; Simmons CA; Keller G; Laflamme MA
    Circulation; 2022 May; 145(18):1412-1426. PubMed ID: 35089805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of cardiomyocyte contraction in human-induced pluripotent stem cell-derived cardiomyocytes.
    Pointon A; Harmer AR; Dale IL; Abi-Gerges N; Bowes J; Pollard C; Garside H
    Toxicol Sci; 2015 Apr; 144(2):227-37. PubMed ID: 25538221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art.
    Talkhabi M; Aghdami N; Baharvand H
    Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes.
    Liu J; Sun N; Bruce MA; Wu JC; Butte MJ
    PLoS One; 2012; 7(5):e37559. PubMed ID: 22624048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing.
    Pesl M; Pribyl J; Acimovic I; Vilotic A; Jelinkova S; Salykin A; Lacampagne A; Dvorak P; Meli AC; Skladal P; Rotrekl V
    Biosens Bioelectron; 2016 Nov; 85():751-757. PubMed ID: 27266660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers.
    Xue T; Cho HC; Akar FG; Tsang SY; Jones SP; Marbán E; Tomaselli GF; Li RA
    Circulation; 2005 Jan; 111(1):11-20. PubMed ID: 15611367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo.
    Sala L; van Meer BJ; Tertoolen LGJ; Bakkers J; Bellin M; Davis RP; Denning C; Dieben MAE; Eschenhagen T; Giacomelli E; Grandela C; Hansen A; Holman ER; Jongbloed MRM; Kamel SM; Koopman CD; Lachaud Q; Mannhardt I; Mol MPH; Mosqueira D; Orlova VV; Passier R; Ribeiro MC; Saleem U; Smith GL; Burton FL; Mummery CL
    Circ Res; 2018 Feb; 122(3):e5-e16. PubMed ID: 29282212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
    Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H
    Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Calcium Transients and Uniaxial Contraction Force in Single Human Embryonic Stem Cell-Derived Cardiomyocytes on Microstructured Elastic Substrate with Spatially Controlled Surface Chemistries.
    Grespan E; Martewicz S; Serena E; Le Houerou V; Rühe J; Elvassore N
    Langmuir; 2016 Nov; 32(46):12190-12201. PubMed ID: 27643958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function.
    Birket MJ; Ribeiro MC; Kosmidis G; Ward D; Leitoguinho AR; van de Pol V; Dambrot C; Devalla HD; Davis RP; Mastroberardino PG; Atsma DE; Passier R; Mummery CL
    Cell Rep; 2015 Oct; 13(4):733-745. PubMed ID: 26489474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The electrophysiological development of cardiomyocytes.
    Liu J; Laksman Z; Backx PH
    Adv Drug Deliv Rev; 2016 Jan; 96():253-73. PubMed ID: 26788696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced Single-Cell Mapping Reveals that in hESC Cardiomyocytes Contraction Kinetics and Action Potential Are Independent of Myosin Isoform.
    Weber N; Kowalski K; Holler T; Radocaj A; Fischer M; Thiemann S; de la Roche J; Schwanke K; Piep B; Peschel N; Krumm U; Lingk A; Wendland M; Greten S; Schmitto JD; Ismail I; Warnecke G; Zywietz U; Chichkov B; Meißner J; Haverich A; Martin U; Brenner B; Zweigerdt R; Kraft T
    Stem Cell Reports; 2020 May; 14(5):788-802. PubMed ID: 32302556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells.
    Yang X; Rodriguez ML; Leonard A; Sun L; Fischer KA; Wang Y; Ritterhoff J; Zhao L; Kolwicz SC; Pabon L; Reinecke H; Sniadecki NJ; Tian R; Ruohola-Baker H; Xu H; Murry CE
    Stem Cell Reports; 2019 Oct; 13(4):657-668. PubMed ID: 31564645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification.
    Lee EK; Tran DD; Keung W; Chan P; Wong G; Chan CW; Costa KD; Li RA; Khine M
    Stem Cell Reports; 2017 Nov; 9(5):1560-1572. PubMed ID: 29033305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myofibrillar Structural Variability Underlies Contractile Function in Stem Cell-Derived Cardiomyocytes.
    Ufford K; Friedline S; Tong Z; Tang VT; Dobbs AS; Tsan YC; Bielas SL; Liu AP; Helms AS
    Stem Cell Reports; 2021 Mar; 16(3):470-477. PubMed ID: 33577793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced stem cell-derived cardiomyocyte differentiation in suspension culture by delivery of nitric oxide using S-nitrosocysteine.
    Hodge AJ; Zhong J; Lipke EA
    Biotechnol Bioeng; 2016 Apr; 113(4):882-94. PubMed ID: 26444682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?
    Veerman CC; Kosmidis G; Mummery CL; Casini S; Verkerk AO; Bellin M
    Stem Cells Dev; 2015 May; 24(9):1035-52. PubMed ID: 25583389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy.
    Pribyl J; Pešl M; Caluori G; Acimovic I; Jelinkova S; Dvorak P; Skladal P; Rotrekl V
    Methods Mol Biol; 2019; 1886():343-353. PubMed ID: 30374878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.