These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26626372)

  • 21. Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method.
    de Souza ON; Ornstein RL
    Biophys J; 1997 Jun; 72(6):2395-7. PubMed ID: 9168016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal Structure Prediction via Basin-Hopping Global Optimization Employing Tiny Periodic Simulation Cells, with Application to Water-Ice.
    Burnham CJ; English NJ
    J Chem Theory Comput; 2019 Jun; 15(6):3889-3900. PubMed ID: 31084025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations.
    Mark P; Nilsson L
    J Comput Chem; 2002 Oct; 23(13):1211-9. PubMed ID: 12210146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On similarity of hydrogen-bonded networks in liquid formamide and water as revealed in the static dielectric studies.
    Jadżyn J; Świergiel J
    Phys Chem Chem Phys; 2012 Mar; 14(9):3170-5. PubMed ID: 22294276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-equilibrium simulations of thermally induced electric fields in water.
    Wirnsberger P; Fijan D; Šarić A; Neumann M; Dellago C; Frenkel D
    J Chem Phys; 2016 Jun; 144(22):224102. PubMed ID: 27305991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pairwise Alternatives to Ewald Summation for Calculating Long-Range Electrostatics in Ionic Liquids.
    McCann BW; Acevedo O
    J Chem Theory Comput; 2013 Feb; 9(2):944-50. PubMed ID: 26588737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analysis of fluctuations in supercooled TIP4P/2005 water.
    Overduin SD; Patey GN
    J Chem Phys; 2013 May; 138(18):184502. PubMed ID: 23676051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconsidering Dispersion Potentials: Reduced Cutoffs in Mesh-Based Ewald Solvers Can Be Faster Than Truncation.
    Isele-Holder RE; Mitchell W; Hammond JR; Kohlmeyer A; Ismail AE
    J Chem Theory Comput; 2013 Dec; 9(12):5412-20. PubMed ID: 26592279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexibility does not change the polarizability of water molecules in the liquid.
    Schropp B; Tavan P
    J Phys Chem B; 2010 Feb; 114(5):2051-7. PubMed ID: 20088487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsolved problem of long-range interactions: dipolar spin-ice study.
    Yonetani Y
    J Phys Condens Matter; 2024 Jan; 36(17):. PubMed ID: 38270229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular dynamics study of water nucleation using the TIP4P/2005 model.
    Pérez A; Rubio A
    J Chem Phys; 2011 Dec; 135(24):244505. PubMed ID: 22225167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competing quantum effects in the dynamics of a flexible water model.
    Habershon S; Markland TE; Manolopoulos DE
    J Chem Phys; 2009 Jul; 131(2):024501. PubMed ID: 19603998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics study of orientational cooperativity in water.
    Kumar P; Franzese G; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041505. PubMed ID: 16711807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited.
    Fanourgakis GS; Xantheas SS
    J Phys Chem A; 2006 Mar; 110(11):4100-6. PubMed ID: 16539435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Monte Carlo simulation study of methane clathrate hydrates confined in slit-shaped pores.
    Chakraborty SN; Gelb LD
    J Phys Chem B; 2012 Feb; 116(7):2183-97. PubMed ID: 22320214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.