These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26626387)

  • 1. Estimation of Absolute Free Energies of Hydration Using Continuum Methods:  Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions.
    Rizzo RC; Aynechi T; Case DA; Kuntz ID
    J Chem Theory Comput; 2006 Jan; 2(1):128-39. PubMed ID: 26626387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and test of highly accurate endpoint free energy methods. 1: Evaluation of ABCG2 charge model on solvation free energy prediction and optimization of atom radii suitable for more accurate solvation free energy prediction by the PBSA method.
    Sun Y; He X; Hou T; Cai L; Man VH; Wang J
    J Comput Chem; 2023 May; 44(14):1334-1346. PubMed ID: 36807356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
    Udier-Blagović M; Morales De Tirado P; Pearlman SA; Jorgensen WL
    J Comput Chem; 2004 Aug; 25(11):1322-32. PubMed ID: 15185325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The parameterization and validation of generalized born models using the pairwise descreening approximation.
    Michel J; Taylor RD; Essex JW
    J Comput Chem; 2004 Nov; 25(14):1760-70. PubMed ID: 15362133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models.
    Xu L; Sun H; Li Y; Wang J; Hou T
    J Phys Chem B; 2013 Jul; 117(28):8408-21. PubMed ID: 23789789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Develop and test a solvent accessible surface area-based model in conformational entropy calculations.
    Wang J; Hou T
    J Chem Inf Model; 2012 May; 52(5):1199-212. PubMed ID: 22497310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized Radii for Poisson-Boltzmann Calculations with the AMBER Force Field.
    Swanson JM; Adcock SA; McCammon JA
    J Chem Theory Comput; 2005 May; 1(3):484-93. PubMed ID: 26641515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease.
    Oehme DP; Brownlee RT; Wilson DJ
    J Comput Chem; 2012 Dec; 33(32):2566-80. PubMed ID: 22915442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area.
    Labute P
    J Comput Chem; 2008 Jul; 29(10):1693-8. PubMed ID: 18307169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Born implicit solvent models for small molecule hydration free energies.
    Brieg M; Setzler J; Albert S; Wenzel W
    Phys Chem Chem Phys; 2017 Jan; 19(2):1677-1685. PubMed ID: 27995260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration.
    Zhang H; Jiang Y; Yan H; Cui Z; Yin C
    J Chem Inf Model; 2017 Nov; 57(11):2763-2775. PubMed ID: 29039666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration Free Energies of Multifunctional Nitroaromatic Compounds.
    Ahmed A; Sandler SI
    J Chem Theory Comput; 2013 Jun; 9(6):2774-85. PubMed ID: 26583868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model.
    Hou T; Zhang W; Huang Q; Xu X
    J Mol Model; 2005 Feb; 11(1):26-40. PubMed ID: 15565273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions.
    Mishra SK; Koča J
    J Phys Chem B; 2018 Aug; 122(34):8113-8121. PubMed ID: 30084252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.