These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26626674)

  • 1. Sequence-Dependent Effects in the Cyclization of Short DNA.
    Czapla L; Swigon D; Olson WK
    J Chem Theory Comput; 2006 May; 2(3):685-95. PubMed ID: 26626674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-dependent motions of DNA: a normal mode analysis at the base-pair level.
    Matsumoto A; Olson WK
    Biophys J; 2002 Jul; 83(1):22-41. PubMed ID: 12080098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 2. Large-Scale Configurational Transformation of a Naturally Curved Molecule.
    Matsumoto A; Tobias I; Olson WK
    J Chem Theory Comput; 2005 Jan; 1(1):130-42. PubMed ID: 26641124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of the dependence of the elastic properties of DNA on nucleotide sequence.
    Olson WK; Swigon D; Coleman BD
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1403-22. PubMed ID: 15306458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 1. Comparison of Computed Motions with the Predicted Behavior of an Ideal Elastic Rod.
    Matsumoto A; Tobias I; Olson WK
    J Chem Theory Comput; 2005 Jan; 1(1):117-29. PubMed ID: 26641123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of intrinsic curvature on conformational properties of circular DNA.
    Katritch V; Vologodskii A
    Biophys J; 1997 Mar; 72(3):1070-9. PubMed ID: 9138556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Base sequence effects in double helical DNA. I. Potential energy estimates of local base morphology.
    Srinivasan AR; Torres R; Clark W; Olson WK
    J Biomol Struct Dyn; 1987 Dec; 5(3):459-96. PubMed ID: 3271482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme bendability of DNA double helix due to bending asymmetry.
    Salari H; Eslami-Mossallam B; Naderi S; Ejtehadi MR
    J Chem Phys; 2015 Sep; 143(10):104904. PubMed ID: 26374059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PREDICTED EFFECTS OF LOCAL CONFORMATIONAL COUPLING AND EXTERNAL RESTRAINTS ON THE TORSIONAL PROPERTIES OF SINGLE DNA MOLECULES.
    Matsumoto A; Olson WK
    Multiscale Model Simul; 2006; 5(4):1227-1247. PubMed ID: 19081755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From rigid base pairs to semiflexible polymers: coarse-graining DNA.
    Becker NB; Everaers R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021923. PubMed ID: 17930081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix bending as a factor in protein/DNA recognition.
    Dickerson RE; Chiu TK
    Biopolymers; 1997; 44(4):361-403. PubMed ID: 9782776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. J-factors of short DNA molecules.
    Zoli M
    J Chem Phys; 2016 Jun; 144(21):214104. PubMed ID: 27276942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of B '-DNA: sequence effects on A-tract-induced bending and flexibility.
    McConnell KJ; Beveridge DL
    J Mol Biol; 2001 Nov; 314(1):23-40. PubMed ID: 11724529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the method of phage T4 DNA ligase-catalyzed ring-closure to the study of DNA structure. I. Computational analysis.
    Hagerman PJ; Ramadevi VA
    J Mol Biol; 1990 Mar; 212(2):351-62. PubMed ID: 2319603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of fluctuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA.
    Olson WK; Marky NL; Jernigan RL; Zhurkin VB
    J Mol Biol; 1993 Jul; 232(2):530-54. PubMed ID: 8345522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial translational motions of base pairs in DNA molecules: application of the extended matrix generator method.
    Marky NL; Olson WK
    Biopolymers; 1994 Jan; 34(1):121-42. PubMed ID: 8110965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ring closure probabilities for DNA fragments by Monte Carlo simulation.
    Levene SD; Crothers DM
    J Mol Biol; 1986 May; 189(1):61-72. PubMed ID: 3783680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Looping probabilities of elastic chains: a path integral approach.
    Cotta-Ramusino L; Maddocks JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051924. PubMed ID: 21230517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological distributions and the torsional rigidity of DNA. A Monte Carlo study of DNA circles.
    Levene SD; Crothers DM
    J Mol Biol; 1986 May; 189(1):73-83. PubMed ID: 3783681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of DNA twisting. I. Relation between twist and cyclization probability.
    Shore D; Baldwin RL
    J Mol Biol; 1983 Nov; 170(4):957-81. PubMed ID: 6315955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.