BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 26626718)

  • 41. Mechanisms responsible for imipenem resistance among Pseudomonas aeruginosa clinical isolates exposed to imipenem concentrations within the mutant selection window.
    Vassilara F; Galani I; Souli M; Papanikolaou K; Giamarellou H; Papadopoulos A
    Diagn Microbiol Infect Dis; 2017 Jul; 88(3):276-281. PubMed ID: 28434899
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dose-related selection of fluoroquinolone-resistant Escherichia coli.
    Olofsson SK; Marcusson LL; Strömbäck A; Hughes D; Cars O
    J Antimicrob Chemother; 2007 Oct; 60(4):795-801. PubMed ID: 17635875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.
    Khan DD; Lagerbäck P; Malmberg C; Kristoffersson AN; Wistrand-Yuen E; Sha C; Cars O; Andersson DI; Hughes D; Nielsen EI; Friberg LE
    Int J Antimicrob Agents; 2018 Mar; 51(3):399-406. PubMed ID: 29127049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prevention of the selection of resistant Staphylococcus aureus by moxifloxacin plus doxycycline in an in vitro dynamic model: an additive effect of the combination.
    Firsov AA; Vostrov SN; Lubenko IY; Portnoy YA; Zinner SH
    Int J Antimicrob Agents; 2004 May; 23(5):451-6. PubMed ID: 15120722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutant selection window approach.
    Blondeau JM
    Vet Dermatol; 2009 Oct; 20(5-6):383-96. PubMed ID: 20178475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of several fluoroquinolones and beta-lactams in terms of their capability to restrict the selection of fluoroquinolone-resistant Salmonella: in vitro models.
    Cebríán L; Rodríguez JC; Escribiano I; Royo SG
    APMIS; 2007 Dec; 115(12):1376-82. PubMed ID: 18184408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of ciprofloxacin-resistant Staphylococcus aureus in in vitro pharmacokinetic environments.
    Campion JJ; McNamara PJ; Evans ME
    Antimicrob Agents Chemother; 2004 Dec; 48(12):4733-44. PubMed ID: 15561851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Susceptibility of 570 Pseudomonas aeruginosa strains to 11 antimicrobial agents and the mechanism of its resistance to fluoroquinolones].
    Lei YC; Wang HB; Sun ZY; Shen ZY
    Zhonghua Yi Xue Za Zhi; 2003 Mar; 83(5):403-7. PubMed ID: 12820918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Testing the mutant selection window in rabbits infected with methicillin-resistant Staphylococcus aureus exposed to vancomycin.
    Zhu YL; Hu LF; Mei Q; Cheng J; Liu YY; Ye Y; Li JB
    J Antimicrob Chemother; 2012 Nov; 67(11):2700-6. PubMed ID: 22809703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data.
    Burgess DS; Hall RG
    Clin Ther; 2007 Jul; 29(7):1421-7. PubMed ID: 17825693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial strain-independent AUC/MIC and strain-specific dose-response relationships reflecting comparative fluoroquinolone anti-pseudomonal pharmacodynamics in an in vitro dynamic model.
    Lubenko IY; Vostrov SN; Portnoy YA; Zinner SH; Firsov AA
    Int J Antimicrob Agents; 2002 Jul; 20(1):44-9. PubMed ID: 12127710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbiological rationale for the utilisation of prulifloxacin, a new fluoroquinolone, in the eradication of serious infections caused by Pseudomonas aeruginosa.
    Roveta S; Schito AM; Marchese A; Schito GC
    Int J Antimicrob Agents; 2005 Nov; 26(5):366-72. PubMed ID: 16216467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Semimechanistic pharmacokinetic-pharmacodynamic model with adaptation development for time-kill experiments of ciprofloxacin against Pseudomonas aeruginosa.
    Grégoire N; Raherison S; Grignon C; Comets E; Marliat M; Ploy MC; Couet W
    Antimicrob Agents Chemother; 2010 Jun; 54(6):2379-84. PubMed ID: 20368392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Meropenem Combined with Ciprofloxacin Combats Hypermutable Pseudomonas aeruginosa from Respiratory Infections of Cystic Fibrosis Patients.
    Rees VE; Yadav R; Rogers KE; Bulitta JB; Wirth V; Oliver A; Boyce JD; Peleg AY; Nation RL; Landersdorfer CB
    Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30104278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation into the selection frequency of resistant mutants and the bacterial kill rate by levofloxacin and ciprofloxacin in non-mucoid Pseudomonas aeruginosa isolates from cystic fibrosis patients.
    Gillespie T; Masterton RG
    Int J Antimicrob Agents; 2002 May; 19(5):377-82. PubMed ID: 12007845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of area under the concentration-time curve to minimum inhibitory concentration ratio on vancomycin treatment outcomes in methicillin-resistant Staphylococcus aureus bacteraemia.
    Song KH; Kim HB; Kim HS; Lee MJ; Jung Y; Kim G; Hwang JH; Kim NH; Kim M; Kim CJ; Choe PG; Chung JY; Park WB; Kim ES; Park KU; Kim NJ; Kim EC; Oh MD
    Int J Antimicrob Agents; 2015 Dec; 46(6):689-95. PubMed ID: 26555059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of high mutation rates on the mechanisms and dynamics of in vitro and in vivo resistance development to single or combined antipseudomonal agents.
    Plasencia V; Borrell N; Maciá MD; Moya B; Pérez JL; Oliver A
    Antimicrob Agents Chemother; 2007 Jul; 51(7):2574-81. PubMed ID: 17470655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation by Monte Carlo simulation of levofloxacin dosing for complicated urinary tract infections caused by Escherichia coli or Pseudomonas aeruginosa.
    Deguchi T; Seike K; Yasuda M; Matsumoto T
    J Infect Chemother; 2011 Oct; 17(5):726-30. PubMed ID: 21409530
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance.
    Walsh CC; Landersdorfer CB; McIntosh MP; Peleg AY; Hirsch EB; Kirkpatrick CM; Bergen PJ
    J Antimicrob Chemother; 2016 Aug; 71(8):2218-29. PubMed ID: 27118778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Guide to selection of fluoroquinolones in patients with lower respiratory tract infections.
    Shams WE; Evans ME
    Drugs; 2005; 65(7):949-91. PubMed ID: 15892589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.