These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26626830)

  • 21. Efficient, "On-the-Fly", Born-Oppenheimer and Car-Parrinello-type Dynamics with Coupled Cluster Accuracy through Fragment Based Electronic Structure.
    Haycraft C; Li J; Iyengar SS
    J Chem Theory Comput; 2017 May; 13(5):1887-1901. PubMed ID: 28362491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum grow--a quantum dynamics sampling approach for growing potential energy surfaces and nonadiabatic couplings.
    Godsi O; Collins MA; Peskin U
    J Chem Phys; 2010 Mar; 132(12):124106. PubMed ID: 20370113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free energy calculations using dual-level Born-Oppenheimer molecular dynamics.
    Retegan M; Martins-Costa M; Ruiz-López MF
    J Chem Phys; 2010 Aug; 133(6):064103. PubMed ID: 20707557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Curvy-steps approach to constraint-free extended-Lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward Born-Oppenheimer trajectories.
    Herbert JM; Head-Gordon M
    J Chem Phys; 2004 Dec; 121(23):11542-56. PubMed ID: 15634119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Communications: Evaluation of the nondiabaticity of quantum molecular dynamics with the dephasing representation of quantum fidelity.
    Zimmermann T; Vanícek J
    J Chem Phys; 2010 Jun; 132(24):241101. PubMed ID: 20590170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleophilic substitution dynamics: comparing wave packet calculations with experiment.
    Kowalewski M; Mikosch J; Wester R; de Vivie-Riedle R
    J Phys Chem A; 2014 Jul; 118(26):4661-9. PubMed ID: 24893314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multistage ab initio quantum wavepacket dynamics formalism for electronic structure and dynamics in open systems.
    Pacheco AB; Iyengar SS
    J Chem Phys; 2010 Jul; 133(4):044105. PubMed ID: 20687631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonances in three-dimensional H + HLi scattering: a time-dependent wave packet dynamical study.
    Padmanaban R; Mahapatra S
    J Chem Phys; 2004 Jan; 120(4):1746-55. PubMed ID: 15268304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Versatile Multiple Time Step Scheme for Efficient ab Initio Molecular Dynamics Simulations.
    Liberatore E; Meli R; Rothlisberger U
    J Chem Theory Comput; 2018 Jun; 14(6):2834-2842. PubMed ID: 29624388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of tunneling in enzyme catalysis by combining a biased propagation approach and the quantum classical path method: application to lipoxygenase.
    Mavri J; Liu H; Olsson MH; Warshel A
    J Phys Chem B; 2008 May; 112(19):5950-4. PubMed ID: 18069813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton-coupled electron transfer in soybean lipoxygenase: dynamical behavior and temperature dependence of kinetic isotope effects.
    Hatcher E; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2007 Jan; 129(1):187-96. PubMed ID: 17199298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Born-Oppenheimer quantum chemistry on the fly with continuous path branching due to nonadiabatic and intense optical interactions.
    Yonehara T; Takatsuka K
    J Chem Phys; 2010 Jun; 132(24):244102. PubMed ID: 20590176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions.
    Yagi K; Takatsuka K
    J Chem Phys; 2005 Dec; 123(22):224103. PubMed ID: 16375466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Communication: Ro-vibrational control of chemical reactivity in H+CH₄→ H₂+CH₃: full-dimensional quantum dynamics calculations and a sudden model.
    Welsch R; Manthe U
    J Chem Phys; 2014 Aug; 141(5):051102. PubMed ID: 25106559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A time-dependent density-functional approach to nonadiabatic electron-nucleus dynamics: formulation and photochemical application.
    Hirai H; Sugino O
    Phys Chem Chem Phys; 2009 Jun; 11(22):4570-8. PubMed ID: 19475177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces.
    Richings GW; Habershon S
    J Chem Theory Comput; 2017 Sep; 13(9):4012-4024. PubMed ID: 28719206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum and classical studies of vibrational motion of CH5+ on a global potential energy surface obtained from a novel ab initio direct dynamics approach.
    Brown A; McCoy AB; Braams BJ; Jin Z; Bowman JM
    J Chem Phys; 2004 Sep; 121(9):4105-16. PubMed ID: 15332956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio two-component Ehrenfest dynamics.
    Ding F; Goings JJ; Liu H; Lingerfelt DB; Li X
    J Chem Phys; 2015 Sep; 143(11):114105. PubMed ID: 26395685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.