These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26626832)

  • 1. What NMR Relaxation Can Tell Us about the Internal Motion of an RNA Hairpin:  A Molecular Dynamics Simulation Study.
    Villa A; Stock G
    J Chem Theory Comput; 2006 Sep; 2(5):1228-36. PubMed ID: 26626832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR (13)C-relaxation study of base and sugar dynamics in GCAA RNA hairpin tetraloop.
    Trantírek L; Caha E; Kaderávek P; Fiala R
    J Biomol Struct Dyn; 2007 Dec; 25(3):243-52. PubMed ID: 17937486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotropic reorientational eigenmode dynamics complements NMR relaxation measurements for RNA.
    Showalter SA; Hall KB
    Methods Enzymol; 2005; 394():465-80. PubMed ID: 15808233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Relation between Internal Motions and Dihedral Angles in an RNA Hairpin Using Molecular Dynamics.
    Juneja A; Villa A; Nilsson L
    J Chem Theory Comput; 2014 Aug; 10(8):3532-40. PubMed ID: 26588317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations.
    Smith PE; van Schaik RC; Szyperski T; Wüthrich K; van Gunsteren WF
    J Mol Biol; 1995 Feb; 246(2):356-65. PubMed ID: 7532721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR Relaxation and Internal Dynamics of Ubiquitin from a 0.2 μs MD Simulation.
    Nederveen AJ; Bonvin AM
    J Chem Theory Comput; 2005 May; 1(3):363-74. PubMed ID: 26641503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH; Daragan VA; Idiyatullin D; Nesmelova I
    J Magn Reson; 2000 Sep; 146(1):188-95. PubMed ID: 10968972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods.
    Andrec M; Montelione GT; Levy RM
    J Magn Reson; 1999 Aug; 139(2):408-21. PubMed ID: 10423379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.
    Yasaka Y; Klein ML; Nakahara M; Matubayasi N
    J Chem Phys; 2012 Feb; 136(7):074508. PubMed ID: 22360249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to visualizing spectral density functions and deriving motional correlation time distributions: applications to an alpha-helix-forming peptide and to a well-folded protein.
    Idiyatullin D; Daragan VA; Mayo KH
    J Magn Reson; 2001 Sep; 152(1):132-48. PubMed ID: 11531372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Because the Light is Better Here: Correlation-Time Analysis by NMR Spectroscopy.
    Smith AA; Ernst M; Meier BH
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13590-13595. PubMed ID: 28856783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C relaxation and dynamics of the purine bases in the iron responsive element RNA hairpin.
    Hall KB; Tang C
    Biochemistry; 1998 Jun; 37(26):9323-32. PubMed ID: 9649313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of DNA structure to internal dynamics: correlation of helical parameters from NOE-based NMR solution structures of d(GCGTACGC)(2) and d(CGCTAGCG)(2) with (13)C order parameters implies conformational coupling in dinucleotide units.
    Isaacs RJ; Spielmann HP
    J Mol Biol; 2001 Mar; 307(2):525-40. PubMed ID: 11254380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone motions of free and pheromone-bound major urinary protein I studied by molecular dynamics simulation.
    Macek P; Novak P; Zídek L; Sklenar V
    J Phys Chem B; 2007 May; 111(20):5731-9. PubMed ID: 17465536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the backbone mobility of ribonuclease T1 and its 2'GMP complex using molecular dynamics simulations and NMR relaxation data.
    Fushman D; Ohlenschläger O; Rüterjans H
    J Biomol Struct Dyn; 1994 Jun; 11(6):1377-402. PubMed ID: 7946080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Methyl Group Dynamics in Protein Simulations with AMBER Force Fields.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Phys Chem B; 2018 May; 122(19):5038-5048. PubMed ID: 29695158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.
    Allnér O; Foloppe N; Nilsson L
    J Phys Chem B; 2015 Jan; 119(3):1114-28. PubMed ID: 25350574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration.
    Fushman D; Cahill S; Cowburn D
    J Mol Biol; 1997 Feb; 266(1):173-94. PubMed ID: 9054979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.