BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 26627046)

  • 1. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
    Hamad EM; Bilatto SE; Adly NY; Correa DS; Wolfrum B; Schöning MJ; Offenhäusser A; Yakushenko A
    Lab Chip; 2016 Jan; 16(1):70-4. PubMed ID: 26627046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices.
    Godino N; Gorkin R; Bourke K; Ducrée J
    Lab Chip; 2012 Sep; 12(18):3281-4. PubMed ID: 22842728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.
    Arayanarakool R; Le Gac S; van den Berg A
    Lab Chip; 2010 Aug; 10(16):2115-21. PubMed ID: 20556303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Printable microfluidic systems using pressure sensitive adhesive material for biosensing devices.
    Wang X; Nilsson D; Norberg P
    Biochim Biophys Acta; 2013 Sep; 1830(9):4398-401. PubMed ID: 23220698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dewetting of conducting polymer inkjet droplets on patterned surfaces.
    Wang JZ; Zheng ZH; Li HW; Huck WT; Sirringhaus H
    Nat Mater; 2004 Mar; 3(3):171-6. PubMed ID: 14991019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.
    Li J; Rossignol F; Macdonald J
    Lab Chip; 2015 Jun; 15(12):2538-58. PubMed ID: 25953427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system.
    Moya A; Ortega-Ribera M; Guimerà X; Sowade E; Zea M; Illa X; Ramon E; Villa R; Gracia-Sancho J; Gabriel G
    Lab Chip; 2018 Jul; 18(14):2023-2035. PubMed ID: 29892739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screen printed paper-based diagnostic devices with polymeric inks.
    Sun JY; Cheng CM; Liao YC
    Anal Sci; 2015; 31(3):145-51. PubMed ID: 25765267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paper-based inkjet-printed microfluidic analytical devices.
    Yamada K; Henares TG; Suzuki K; Citterio D
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.