These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 26627046)

  • 21. Application of CE-MS to examination of black inkjet printing inks for forensic purposes.
    Kula A; Król M; Wietecha-Posłuszny R; Woźniakiewicz M; Kościelniak P
    Talanta; 2014 Oct; 128():92-101. PubMed ID: 25059135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A litmus-type colorimetric and fluorometric volatile organic compound sensor based on inkjet-printed polydiacetylenes on paper substrates.
    Yoon B; Park IS; Shin H; Park HJ; Lee CW; Kim JM
    Macromol Rapid Commun; 2013 May; 34(9):731-5. PubMed ID: 23417983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors.
    Yoon B; Shin H; Kang EM; Cho DW; Shin K; Chung H; Lee CW; Kim JM
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4527-35. PubMed ID: 23469803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inkjet-Printing of Nanoparticle Gold and Silver Ink on Cyclic Olefin Copolymer for DNA-Sensing Applications.
    Trotter M; Juric D; Bagherian Z; Borst N; Gläser K; Meissner T; von Stetten FV; Zimmermann A
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection.
    Chen J; Zhou Y; Wang D; He F; Rotello VM; Carter KR; Watkins JJ; Nugen SR
    Lab Chip; 2015 Jul; 15(14):3086-94. PubMed ID: 26095586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inkjet print microchannels based on a liquid template.
    Guo Y; Li L; Li F; Zhou H; Song Y
    Lab Chip; 2015 Apr; 15(7):1759-64. PubMed ID: 25686015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatible "click" wafer bonding for microfluidic devices.
    Saharil F; Carlborg CF; Haraldsson T; van der Wijngaart W
    Lab Chip; 2012 Sep; 12(17):3032-5. PubMed ID: 22760578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full-wafer in-situ fabrication and packaging of microfluidic flow cytometer with photo-patternable adhesive polymers.
    de Wijs K; Liu C; Majeed B; Jans K; O'Callaghan JM; Loo J; Sohn E; Peeters S; Van Roosbroeck R; Miyazaki T; Hoshiko K; Nishimura I; Hieda K; Lagae L
    Biomed Microdevices; 2017 Nov; 20(1):2. PubMed ID: 29159519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution direct patterning of gold nanoparticles by the microfluidic molding process.
    Demko MT; Cheng JC; Pisano AP
    Langmuir; 2010 Nov; 26(22):16710-4. PubMed ID: 20886896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers.
    Rajendra V; Sicard C; Brennan JD; Brook MA
    Analyst; 2014 Dec; 139(24):6361-5. PubMed ID: 25353713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays.
    Dixon C; Ng AH; Fobel R; Miltenburg MB; Wheeler AR
    Lab Chip; 2016 Nov; 16(23):4560-4568. PubMed ID: 27801455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Inkjet-Printed Digital Microfluidics Devices.
    Chen S; He Z; Choi S; Novosselov IV
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.
    Bsoul A; Pan S; Cretu E; Stoeber B; Walus K
    Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.
    Chen K; Kuang X; Li V; Kang G; Qi HJ
    Soft Matter; 2018 Mar; 14(10):1879-1886. PubMed ID: 29459910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.