These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 26627046)
41. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Shen W; Li M; Ye C; Jiang L; Song Y Lab Chip; 2012 Sep; 12(17):3089-95. PubMed ID: 22763412 [TBL] [Abstract][Full Text] [Related]
42. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications. Salentijn GI; Oomen PE; Grajewski M; Verpoorte E Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294 [TBL] [Abstract][Full Text] [Related]
43. Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Yoon B; Ham DY; Yarimaga O; An H; Lee CW; Kim JM Adv Mater; 2011 Dec; 23(46):5492-7. PubMed ID: 22052793 [TBL] [Abstract][Full Text] [Related]
44. Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems. Wu J; Wang R; Yu H; Li G; Xu K; Tien NC; Roberts RC; Li D Lab Chip; 2015 Feb; 15(3):690-5. PubMed ID: 25412449 [TBL] [Abstract][Full Text] [Related]
45. Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications. Iervolino F; Suriano R; Scolari M; Gelmi I; Castoldi L; Levi M ACS Omega; 2021 Jun; 6(24):15892-15902. PubMed ID: 34179633 [TBL] [Abstract][Full Text] [Related]
47. Application of capillary electrophoresis to examination of color inkjet printing inks for forensic purposes. Szafarska M; Wietecha-Posłuszny R; Woźniakiewicz M; Kościelniak P Forensic Sci Int; 2011 Oct; 212(1-3):78-85. PubMed ID: 21664080 [TBL] [Abstract][Full Text] [Related]
48. Fully Inkjet Printing Preparation of a Carbon Dots Multichannel Microfluidic Paper-Based Sensor and Its Application in Food Additive Detection. Deng Y; Li Q; Zhou Y; Qian J ACS Appl Mater Interfaces; 2021 Dec; 13(48):57084-57091. PubMed ID: 34797049 [TBL] [Abstract][Full Text] [Related]
50. Three-dimensional printing of freeform helical microstructures: a review. Farahani RD; Chizari K; Therriault D Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812 [TBL] [Abstract][Full Text] [Related]
51. Inkjet Printing of Reactive Silver Ink on Textiles. Shahariar H; Kim I; Soewardiman H; Jur JS ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708 [TBL] [Abstract][Full Text] [Related]
52. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Su W; Cook BS; Fang Y; Tentzeris MM Sci Rep; 2016 Oct; 6():35111. PubMed ID: 27713545 [TBL] [Abstract][Full Text] [Related]
53. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Nuchtavorn N; Macka M Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101 [TBL] [Abstract][Full Text] [Related]
54. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices. Kalish B; Tsutsui H J Vis Exp; 2016 Apr; (110):e53805. PubMed ID: 27077551 [TBL] [Abstract][Full Text] [Related]
55. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753 [TBL] [Abstract][Full Text] [Related]
56. An inkjet-printed electrowetting valve for paper-fluidic sensors. Koo CK; He F; Nugen SR Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822 [TBL] [Abstract][Full Text] [Related]
57. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Beauchamp MJ; Nordin GP; Woolley AT Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085 [TBL] [Abstract][Full Text] [Related]
58. A continuous tilting of micromolds for fabricating polymeric microstructures in microinjection. Kim BI; Lee KG; Lee TJ; Choi BG; Park JY; Jung CY; Lee CS; Lee SJ Lab Chip; 2013 Nov; 13(22):4321-5. PubMed ID: 24056842 [TBL] [Abstract][Full Text] [Related]
59. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing. Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020 [TBL] [Abstract][Full Text] [Related]
60. Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology. Ahn JH; Hong HJ; Lee CY Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]