These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
597 related articles for article (PubMed ID: 26627060)
1. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis. Deepak V; Kruger MC; Joubert A; Coetzee M Biofactors; 2015; 41(6):403-13. PubMed ID: 26627060 [TBL] [Abstract][Full Text] [Related]
2. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253 [TBL] [Abstract][Full Text] [Related]
3. Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts. Kim MH; Ryu SY; Choi JS; Min YK; Kim SH J Cell Physiol; 2009 Dec; 221(3):618-28. PubMed ID: 19653230 [TBL] [Abstract][Full Text] [Related]
4. Coenzyme q10 regulates osteoclast and osteoblast differentiation. Moon HJ; Ko WK; Jung MS; Kim JH; Lee WJ; Park KS; Heo JK; Bang JB; Kwon IK J Food Sci; 2013 May; 78(5):H785-891. PubMed ID: 23582186 [TBL] [Abstract][Full Text] [Related]
5. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice. Kim SD; Kim HN; Lee JH; Jin WJ; Hwang SJ; Kim HH; Ha H; Lee ZH Biochem Pharmacol; 2013 Sep; 86(6):782-90. PubMed ID: 23928189 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of receptor activator of nuclear factor-κB ligand- or lipopolysaccharide-induced osteoclast formation by conophylline through downregulation of CREB. Koide N; Kondo Y; Odkhuu E; Ulziisaikhan J; Ukaji T; Yokochi T; Umezawa K Immunol Lett; 2014 Sep; 161(1):31-7. PubMed ID: 24792671 [TBL] [Abstract][Full Text] [Related]
7. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production. Lee SY; Lee KS; Yi SH; Kook SH; Lee JC PLoS One; 2013; 8(12):e80873. PubMed ID: 24324641 [TBL] [Abstract][Full Text] [Related]
9. The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells. Kim HS; Suh KS; Sul D; Kim BJ; Lee SK; Jung WW Int J Mol Med; 2012 Feb; 29(2):169-77. PubMed ID: 22038020 [TBL] [Abstract][Full Text] [Related]
10. Ginsenoside Rh2 inhibits osteoclastogenesis through down-regulation of NF-κB, NFATc1 and c-Fos. He L; Lee J; Jang JH; Lee SH; Nan MH; Oh BC; Lee SG; Kim HH; Soung NK; Ahn JS; Kim BY Bone; 2012 Jun; 50(6):1207-13. PubMed ID: 22484180 [TBL] [Abstract][Full Text] [Related]
11. Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway. Chawalitpong S; Sornkaew N; Suksamrarn A; Palaga T Eur J Pharmacol; 2016 Oct; 788():351-359. PubMed ID: 27523282 [TBL] [Abstract][Full Text] [Related]
12. Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Lee JH; Jin H; Shim HE; Kim HN; Ha H; Lee ZH Mol Pharmacol; 2010 Jan; 77(1):17-25. PubMed ID: 19828731 [TBL] [Abstract][Full Text] [Related]
13. Constant hypoxia inhibits osteoclast differentiation and bone resorption by regulating phosphorylation of JNK and IκBα. Ma Z; Yu R; Zhao J; Sun L; Jian L; Li C; Liu X Inflamm Res; 2019 Feb; 68(2):157-166. PubMed ID: 30604211 [TBL] [Abstract][Full Text] [Related]
14. Technetium-99 conjugated with methylene diphosphonate inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis. Gong W; Dou H; Liu X; Sun L; Hou Y Clin Exp Pharmacol Physiol; 2012 Oct; 39(10):886-93. PubMed ID: 23013134 [TBL] [Abstract][Full Text] [Related]
15. Harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. Yonezawa T; Hasegawa S; Asai M; Ninomiya T; Sasaki T; Cha BY; Teruya T; Ozawa H; Yagasaki K; Nagai K; Woo JT Eur J Pharmacol; 2011 Jan; 650(2-3):511-8. PubMed ID: 21047508 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ). Odkhuu E; Koide N; Haque A; Tsolmongyn B; Naiki Y; Hashimoto S; Komatsu T; Yoshida T; Yokochi T Immunol Lett; 2012 Feb; 142(1-2):34-40. PubMed ID: 22193059 [TBL] [Abstract][Full Text] [Related]
17. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094 [TBL] [Abstract][Full Text] [Related]
18. Agelasine D suppresses RANKL-induced osteoclastogenesis via down-regulation of c-Fos, NFATc1 and NF-κB. Kang MR; Jo SA; Yoon YD; Park KH; Oh SJ; Yun J; Lee CW; Nam KH; Kim Y; Han SB; Yu J; Rho J; Kang JS Mar Drugs; 2014 Nov; 12(11):5643-56. PubMed ID: 25421321 [TBL] [Abstract][Full Text] [Related]
19. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Chen G; Xu Q; Dai M; Liu X Biochem Biophys Res Commun; 2019 Feb; 509(2):329-334. PubMed ID: 30579598 [TBL] [Abstract][Full Text] [Related]
20. Modulating calcium-mediated NFATc1 and mitogen-activated protein kinase deactivation underlies the inhibitory effects of kavain on osteoclastogenesis and bone resorption. Guo Q; Cao Z; Wu B; Chen F; Tickner J; Wang Z; Qiu H; Wang C; Chen K; Tan R; Gao Q; Xu J J Cell Physiol; 2018 Jan; 234(1):789-801. PubMed ID: 30078210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]