These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 26627161)
1. Computational Investigation of Mechanisms for Ring-Opening Polymerization of ε-Caprolactone: Evidence for Bifunctional Catalysis by Alcohols. Buis N; French SA; Ruggiero GD; Stengel B; Tulloch AA; Williams IH J Chem Theory Comput; 2007 Jan; 3(1):146-55. PubMed ID: 26627161 [TBL] [Abstract][Full Text] [Related]
2. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation. Susperregui N; Delcroix D; Martin-Vaca B; Bourissou D; Maron L J Org Chem; 2010 Oct; 75(19):6581-7. PubMed ID: 20799719 [TBL] [Abstract][Full Text] [Related]
3. Monomer versus alcohol activation in the 4-dimethylaminopyridine-catalyzed ring-opening polymerization of lactide and lactic O-carboxylic anhydride. Bonduelle C; Martín-Vaca B; Cossío FP; Bourissou D Chemistry; 2008; 14(17):5304-12. PubMed ID: 18446916 [TBL] [Abstract][Full Text] [Related]
4. N-Heterocyclic Carbene-Catalyzed Ring Opening Polymerization of ε-Caprolactone with and without Alcohol Initiators: Insights from Theory and Experiment. Jones GO; Chang YA; Horn HW; Acharya AK; Rice JE; Hedrick JL; Waymouth RM J Phys Chem B; 2015 Apr; 119(17):5728-37. PubMed ID: 25848823 [TBL] [Abstract][Full Text] [Related]
5. A Density Functional Study of Methanol Clusters. Boyd SL; Boyd RJ J Chem Theory Comput; 2007 Jan; 3(1):54-61. PubMed ID: 26627151 [TBL] [Abstract][Full Text] [Related]
6. Density functional theory study on mechanisms of epoxy-phenol curing reaction. Pham MP; Pham BQ; Huynh LK; Pham HQ; Marks MJ; Truong TN J Comput Chem; 2014 Aug; 35(22):1630-40. PubMed ID: 24935159 [TBL] [Abstract][Full Text] [Related]
7. Computational study of the aminolysis of anhydrides: effect of the catalysis to the reaction of succinic anhydride with methylamine in gas phase and nonpolar solution. Petrova T; Okovytyy S; Gorb L; Leszczynski J J Phys Chem A; 2008 Jun; 112(23):5224-35. PubMed ID: 18491887 [TBL] [Abstract][Full Text] [Related]
8. Theoretical investigation on the mechanism and kinetics of the ring-opening polymerization of ε-caprolactone initiated by tin(II) alkoxides. Sattayanon C; Kungwan N; Punyodom W; Meepowpan P; Jungsuttiwong S J Mol Model; 2013 Dec; 19(12):5377-85. PubMed ID: 24173613 [TBL] [Abstract][Full Text] [Related]
9. DFT study of the ring opening polymerization of ε-caprolactone by grafted lanthanide complexes: 2--Effect of the initiator ligand. Del Rosal I; Poteau R; Maron L Dalton Trans; 2011 Nov; 40(42):11228-40. PubMed ID: 21918766 [TBL] [Abstract][Full Text] [Related]
10. Computational study of the aminolysis of 2-benzoxazolinone. Ilieva S; Galabov B; Musaev DG; Morokuma K J Org Chem; 2003 May; 68(9):3406-12. PubMed ID: 12713338 [TBL] [Abstract][Full Text] [Related]
11. Methanol-Assisted Phthalimide Ring Opening: Concerted or Stepwise Mechanism? Chen WH; Gao XJ; Gao X J Phys Chem A; 2018 Mar; 122(12):3115-3119. PubMed ID: 29513535 [TBL] [Abstract][Full Text] [Related]
12. The Role of Alkoxide Initiator, Spin State, and Oxidation State in Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Iron Bis(imino)pyridine Complexes. Ortuño MA; Dereli B; Chiaie KRD; Biernesser AB; Qi M; Byers JA; Cramer CJ Inorg Chem; 2018 Feb; 57(4):2064-2071. PubMed ID: 29381341 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of organoaluminum compounds containing quinolin-8-amine derivatives and their catalytic behaviour for ring-opening polymerization of epsilon-caprolactone. Shen M; Zhang W; Nomura K; Sun WH Dalton Trans; 2009 Nov; (41):9000-9. PubMed ID: 19826733 [TBL] [Abstract][Full Text] [Related]
15. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
16. A Theoretical Study of the Mechanism of the Desymmetrization of Cyclic meso-Anhydrides by Chiral Amino Alcohols. Dedeoglu B; Catak S; Houk KN; Aviyente V ChemCatChem; 2010 Sep; 2(9):1122-1129. PubMed ID: 22368722 [TBL] [Abstract][Full Text] [Related]
17. A computational insight into a metal mediated pathway for the ring-opening polymerization (ROP) of lactides by an ionic {(NHC)2Ag}(+)X(-) (X = halide) type N-heterocyclic carbene (NHC) complex. Stephen R; Sunoj RB; Ghosh P Dalton Trans; 2011 Oct; 40(39):10156-61. PubMed ID: 21879075 [TBL] [Abstract][Full Text] [Related]
18. Bis(phosphinimino)methanide borohydride complexes of the rare-earth elements as initiators for the ring-opening polymerization of ε-caprolactone: combined experimental and computational investigations. Jenter J; Roesky PW; Ajellal N; Guillaume SM; Susperregui N; Maron L Chemistry; 2010 Apr; 16(15):4629-38. PubMed ID: 20232308 [TBL] [Abstract][Full Text] [Related]
19. Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization. Peeters J; Palmans AR; Veld M; Scheijen F; Heise A; Meijer EW Biomacromolecules; 2004; 5(5):1862-8. PubMed ID: 15360299 [TBL] [Abstract][Full Text] [Related]
20. Ni(II) tetraphosphine complexes as catalysts/initiators in the ring opening polymerization of ε-caprolactone. Wu XY; Ren ZG; Lang JP Dalton Trans; 2014 Jan; 43(4):1716-23. PubMed ID: 24225635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]