BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26627172)

  • 1. Density Functionals for Noncovalent Interaction Energies of Biological Importance.
    Zhao Y; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):289-300. PubMed ID: 26627172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions.
    Zhao Y; Schultz NE; Truhlar DG
    J Chem Theory Comput; 2006 Mar; 2(2):364-82. PubMed ID: 26626525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules.
    Hohenstein EG; Chill ST; Sherrill CD
    J Chem Theory Comput; 2008 Dec; 4(12):1996-2000. PubMed ID: 26620472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functionals with broad applicability in chemistry.
    Zhao Y; Truhlar DG
    Acc Chem Res; 2008 Feb; 41(2):157-67. PubMed ID: 18186612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of noncovalent tetraphenylporphine···C60 dyads as studied by different long-range and dispersion-corrected DFT functionals.
    Amelines-Sarria O; Basiuk VA; Duarte-Alaniz V; Rivera M
    Phys Chem Chem Phys; 2015 Nov; 17(41):27399-408. PubMed ID: 26422808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals.
    Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD
    J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions.
    Goerigk L; Grimme S
    Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions.
    Zhao Y; Truhlar DG
    J Chem Theory Comput; 2008 Nov; 4(11):1849-68. PubMed ID: 26620329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene.
    Leverentz HR; Truhlar DG
    J Phys Chem A; 2008 Jul; 112(26):6009-16. PubMed ID: 18540587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of density functionals for pi systems: Energy differences between cumulenes and poly-ynes; proton affinities, bond length alternation, and torsional potentials of conjugated polyenes; and proton affinities of conjugated Shiff bases.
    Zhao Y; Truhlar DG
    J Phys Chem A; 2006 Sep; 110(35):10478-86. PubMed ID: 16942053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions.
    Zhao Y; Truhlar DG
    J Chem Phys; 2006 Nov; 125(19):194101. PubMed ID: 17129083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods.
    Zhao Y; Ng HT; Peverati R; Truhlar DG
    J Chem Theory Comput; 2012 Aug; 8(8):2824-34. PubMed ID: 26592123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers.
    Dahlke EE; Olson RM; Leverentz HR; Truhlar DG
    J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Model Chemistries for Noncovalent Interactions.
    Zhao Y; Truhlar DG
    J Chem Theory Comput; 2006 Jul; 2(4):1009-18. PubMed ID: 26633060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark RI-MP2 database of nucleic acid base trimers: performance of different density functional models for prediction of structures and binding energies.
    Kabelác M; Valdes H; Sherer EC; Cramer CJ; Hobza P
    Phys Chem Chem Phys; 2007 Sep; 9(36):5000-8. PubMed ID: 17851596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Density Functionals for Intramolecular Dispersion-Rich Interactions.
    Mourik Tv
    J Chem Theory Comput; 2008 Oct; 4(10):1610-9. PubMed ID: 26620167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How well can new-generation density functionals describe protonated epoxides where older functionals fail?
    Zhao Y; Truhlar DG
    J Org Chem; 2007 Jan; 72(1):295-8. PubMed ID: 17194116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions.
    Zhao Y; Truhlar DG
    J Phys Chem A; 2005 Jun; 109(25):5656-67. PubMed ID: 16833898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.