BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26627415)

  • 21. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.
    Wong KY; Gao J
    J Chem Theory Comput; 2008 Sep; 4(9):1409-1422. PubMed ID: 19749977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects.
    Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J
    J Comput Chem; 2003 Jan; 24(2):177-90. PubMed ID: 12497598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations.
    Mhashal AR; Major DT
    J Phys Chem B; 2021 Feb; 125(5):1369-1377. PubMed ID: 33522797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid Quantum and Classical Simulations of the Formate Dehydrogenase Catalyzed Hydride Transfer Reaction on an Accurate Semiempirical Potential Energy Surface.
    Vardi-Kilshtain A; Major DT; Kohen A; Engel H; Doron D
    J Chem Theory Comput; 2012 Nov; 8(11):4786-96. PubMed ID: 26605631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted alpha-methoxystyrenes and substituted acetic acids.
    Wong KY; Richard JP; Gao J
    J Am Chem Soc; 2009 Oct; 131(39):13963-71. PubMed ID: 19754046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Free energy calculations using dual-level Born-Oppenheimer molecular dynamics.
    Retegan M; Martins-Costa M; Ruiz-López MF
    J Chem Phys; 2010 Aug; 133(6):064103. PubMed ID: 20707557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions.
    Giese TJ; Zeng J; Ekesan Ş; York DM
    J Chem Theory Comput; 2022 Jul; 18(7):4304-4317. PubMed ID: 35709391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase.
    Olsson MH; Siegbahn PE; Warshel A
    J Am Chem Soc; 2004 Mar; 126(9):2820-8. PubMed ID: 14995199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates.
    Shiga M; Fujisaki H
    J Chem Phys; 2012 May; 136(18):184103. PubMed ID: 22583273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sampling the proton transfer reaction coordinate in mixed quantum-classical molecular dynamics simulations.
    Ka BJ; Thompson WH
    J Phys Chem A; 2012 Jan; 116(2):832-8. PubMed ID: 22148746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions.
    Dzierlenga MW; Varga MJ; Schwartz SD
    Methods Enzymol; 2016; 578():21-43. PubMed ID: 27497161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic isotope effects calculated with the instanton method.
    Meisner J; Rommel JB; Kästner J
    J Comput Chem; 2011 Dec; 32(16):3456-63. PubMed ID: 21898468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient methods and practical guidelines for simulating isotope effects.
    Ceriotti M; Markland TE
    J Chem Phys; 2013 Jan; 138(1):014112. PubMed ID: 23298033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bennett's acceptance ratio and histogram analysis methods enhanced by umbrella sampling along a reaction coordinate in configurational space.
    Kim I; Allen TW
    J Chem Phys; 2012 Apr; 136(16):164103. PubMed ID: 22559466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of frequency factors for the calculation of kinetic isotope effects from classical and path integral free energy simulations.
    Giese TJ; York DM
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37125722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. QM/MM Free-Energy Perturbation Compared to Thermodynamic Integration and Umbrella Sampling:  Application to an Enzymatic Reaction.
    Kästner J; Senn HM; Thiel S; Otte N; Thiel W
    J Chem Theory Comput; 2006 Mar; 2(2):452-61. PubMed ID: 26626532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.