BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 26627568)

  • 1. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.
    Liu H; Song Y; Xue F; Li X
    Chaos; 2015 Nov; 25(11):113108. PubMed ID: 26627568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.
    Nobukawa S; Nishimura H
    Int J Neural Syst; 2016 Aug; 26(5):1550040. PubMed ID: 26678248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance.
    Li X; Zhang J; Small M
    Chaos; 2009 Mar; 19(1):013126. PubMed ID: 19334990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-driven simulations of a plastic, spiking neural network.
    Chen CC; Jasnow D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031908. PubMed ID: 22060404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity.
    Ren Q; Kolwankar KM; Samal A; Jost J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056103. PubMed ID: 23214839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike-timing dynamics of neuronal groups.
    Izhikevich EM; Gally JA; Edelman GM
    Cereb Cortex; 2004 Aug; 14(8):933-44. PubMed ID: 15142958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering.
    Câteau H; Kitano K; Fukai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051909. PubMed ID: 18643104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized criticality and scale-free properties in emergent functional neural networks.
    Shin CW; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):045101. PubMed ID: 17155118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.