These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26627617)

  • 1. Nitrogen Fixation by a Molybdenum Catalyst Mimicking the Function of the Nitrogenase Enzyme:  A Critical Evaluation of DFT and Solvent Effects.
    Magistrato A; Robertazzi A; Carloni P
    J Chem Theory Comput; 2007 Sep; 3(5):1708-20. PubMed ID: 26627617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free reaction enthalpy profile of the Schrock cycle derived from density functional theory calculations on the full [Mo(HIPT)N3N] catalyst.
    Thimm W; Gradert C; Broda H; Wennmohs F; Neese F; Tuczek F
    Inorg Chem; 2015 Oct; 54(19):9248-55. PubMed ID: 26107395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Yandulov DV; Schrock RR
    Science; 2003 Jul; 301(5629):76-8. PubMed ID: 12843387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cleaving the n,n triple bond: the transformation of dinitrogen to ammonia by nitrogenases.
    Lee CC; Ribbe MW; Hu Y
    Met Ions Life Sci; 2014; 14():147-76. PubMed ID: 25416394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment.
    Schrock RR
    Angew Chem Int Ed Engl; 2008; 47(30):5512-22. PubMed ID: 18537212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT study of the full catalytic cycle for the propene hydroformylation catalyzed by a heterobimetallic HPt(SnCl3)(PH3)2 model catalyst.
    da Silva JC; Dias RP; de Almeida WB; Rocha WR
    J Comput Chem; 2010 Jul; 31(10):1986-2000. PubMed ID: 20082381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full HIPTN3N ligand.
    Schenk S; Le Guennic B; Kirchner B; Reiher M
    Inorg Chem; 2008 May; 47(9):3634-50. PubMed ID: 18357978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies of homogeneous catalysts mimicking nitrogenase.
    Sgrignani J; Franco D; Magistrato A
    Molecules; 2011 Jan; 16(1):442-65. PubMed ID: 21221062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction pathway of end-on terminally coordinated dinitrogen. V. N-N bond cleavage in Mo/W hydrazidium complexes with diphosphine coligands. Comparison with triamidoamine systems.
    Mersmann K; Horn KH; Böres N; Lehnert N; Studt F; Paulat F; Peters G; Ivanovic-Burmazovic I; van Eldik R; Tuczek F
    Inorg Chem; 2005 May; 44(9):3031-45. PubMed ID: 15847407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Mechanistic Study of [MoFe
    Thorhallsson AT; Bjornsson R
    Inorg Chem; 2019 Feb; 58(3):1886-1894. PubMed ID: 30649878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of [(HIPTNCH2CH2)3N]Cr Compounds (HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) and an evaluation of chromium for the reduction of dinitrogen to ammonia.
    Smythe NC; Schrock RR; Müller P; Weare WW
    Inorg Chem; 2006 Sep; 45(18):7111-8. PubMed ID: 16933911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures.
    Tanaka H; Mori H; Seino H; Hidai M; Mizobe Y; Yoshizawa K
    J Am Chem Soc; 2008 Jul; 130(28):9037-47. PubMed ID: 18558678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic reduction of dinitrogen to ammonia at well-defined single metal sites.
    Schrock RR
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):959-69; discussion 1035-40. PubMed ID: 15901545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics and mechanism of ammonia synthesis through the Chatt Cycle: conditions for a catalytic mode and comparison with the Schrock Cycle.
    Stephan GC; Sivasankar C; Studt F; Tuczek F
    Chemistry; 2008; 14(2):644-52. PubMed ID: 17973285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elementary kinetics of nitrogen electroreduction on Fe surfaces.
    Maheshwari S; Rostamikia G; Janik MJ
    J Chem Phys; 2019 Jan; 150(4):041708. PubMed ID: 30709282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking nitrogenase.
    Dance I
    Dalton Trans; 2010 Mar; 39(12):2972-83. PubMed ID: 20221528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical mechanism of nitrogenase: calculated details of the intramolecular mechanism for hydrogenation of eta(2)-N(2) on FeMo-co to NH(3).
    Dance I
    Dalton Trans; 2008 Nov; (43):5977-91. PubMed ID: 19082054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the coordination chemistry and mechanism of biological nitrogen fixation.
    Dance I
    Chem Asian J; 2007 Aug; 2(8):936-46. PubMed ID: 17614310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of the water oxidation catalyst cis,cis-[(bpy)2(H2O)Ru(III)ORu(III)(OH2)(bpy)2]4+, the blue dimer.
    Jurss JW; Concepcion JJ; Butler JM; Omberg KM; Baraldo LM; Thompson DG; Lebeau EL; Hornstein B; Schoonover JR; Jude H; Thompson JD; Dattelbaum DM; Rocha RC; Templeton JL; Meyer TJ
    Inorg Chem; 2012 Feb; 51(3):1345-58. PubMed ID: 22273403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.