These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26627705)
21. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity. Park GK; Lim JH; Kim SD; Shim SH J Microbiol Biotechnol; 2012 Mar; 22(3):326-30. PubMed ID: 22450787 [TBL] [Abstract][Full Text] [Related]
22. Efficacy of ergosterol peroxide obtained from the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. Daroodi Z; Taheri P; Tarighi S; Iranshahi M; Akaberi M J Appl Microbiol; 2024 Feb; 135(2):. PubMed ID: 38346851 [TBL] [Abstract][Full Text] [Related]
23. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp. Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281 [TBL] [Abstract][Full Text] [Related]
24. Exploring antagonistic metabolites of established biocontrol agent of marine origin. Rane MR; Sarode PD; Chaudhari BL; Chincholkar SB Appl Biochem Biotechnol; 2008 Dec; 151(2-3):665-75. PubMed ID: 18626581 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group. Xiong Z; Niu J; Liu H; Xu Z; Li J; Wu Q Bioorg Med Chem Lett; 2017 May; 27(9):2010-2013. PubMed ID: 28320617 [TBL] [Abstract][Full Text] [Related]
26. Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases. Saikia R; Kumar R; Arora DK; Gogoi DK; Azad P Folia Microbiol (Praha); 2006; 51(5):375-80. PubMed ID: 17176755 [TBL] [Abstract][Full Text] [Related]
27. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2000 Sep; 155(3):233-42. PubMed ID: 11061193 [TBL] [Abstract][Full Text] [Related]
28. Characterization of antifungal metabolite phenazine from rice rhizosphere fluorescent pseudomonads (FPs) and their effect on sheath blight of rice. Karmegham N; Vellasamy S; Natesan B; Sharma MP; Al Farraj DA; Elshikh MS Saudi J Biol Sci; 2020 Dec; 27(12):3313-3326. PubMed ID: 33304137 [TBL] [Abstract][Full Text] [Related]
29. Isolation and purification of a modified phenazine, griseoluteic acid, produced by Streptomyces griseoluteus P510. Wang Y; Luo Q; Zhang X; Wang W Res Microbiol; 2011 Apr; 162(3):311-9. PubMed ID: 21262358 [TBL] [Abstract][Full Text] [Related]
30. Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. Jeon CW; Kim DR; Kwak YS World J Microbiol Biotechnol; 2019 Aug; 35(8):128. PubMed ID: 31375920 [TBL] [Abstract][Full Text] [Related]
31. The peculiar physiological responses of Rhizoctonia solani under the antagonistic interaction coupled by a novel antifungalmycin N2 from Streptomyces sp. N2. Yang Y; Wu ZM; Li KT Arch Microbiol; 2019 Aug; 201(6):787-794. PubMed ID: 30863921 [TBL] [Abstract][Full Text] [Related]
32. Identification of a new phytotoxic compound from culture filtrates of an aggressive Rhizoctonia solani AG 1A isolate inducing sheath blight of rice. Dauda WP; Rana VS; Shanmugam V J Basic Microbiol; 2022 Nov; 62(11):1346-1359. PubMed ID: 36122185 [TBL] [Abstract][Full Text] [Related]
33. A Novel and Effective Streptomyces sp. N2 Against Various Phytopathogenic Fungi. Xu B; Chen W; Wu ZM; Long Y; Li KT Appl Biochem Biotechnol; 2015 Nov; 177(6):1338-47. PubMed ID: 26306529 [TBL] [Abstract][Full Text] [Related]
34. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Nagarajkumar M; Bhaskaran R; Velazhahan R Microbiol Res; 2004; 159(1):73-81. PubMed ID: 15160609 [TBL] [Abstract][Full Text] [Related]
35. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. D'aes J; Hua GK; De Maeyer K; Pannecoucque J; Forrez I; Ongena M; Dietrich LE; Thomashow LS; Mavrodi DV; Höfte M Phytopathology; 2011 Aug; 101(8):996-1004. PubMed ID: 21405991 [TBL] [Abstract][Full Text] [Related]
37. Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice. Boukaew S; Klinmanee C; Prasertsan P World J Microbiol Biotechnol; 2013 Oct; 29(10):1885-93. PubMed ID: 23653261 [TBL] [Abstract][Full Text] [Related]
38. Antifungal activity of a soil isolate of Pseudomonas chlororaphis against medically important dermatophytes and identification of a phenazine-like compound as its bioactive metabolite. Ranjbariyan A; Shams-Ghahfarokhi M; Razzaghi-Abyaneh M J Mycol Med; 2014 Jun; 24(2):e57-64. PubMed ID: 24746720 [TBL] [Abstract][Full Text] [Related]
39. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites. Choudhary B; Nagpure A; Gupta RK J Basic Microbiol; 2015 Dec; 55(12):1343-56. PubMed ID: 26214840 [TBL] [Abstract][Full Text] [Related]
40. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Shahid M; Singh BN; Verma S; Choudhary P; Das S; Chakdar H; Murugan K; Goswami SK; Saxena AK Braz J Microbiol; 2021 Dec; 52(4):1687-1699. PubMed ID: 34591293 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]