BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26627734)

  • 1. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells.
    Wang HC; Lin CC; Chong R; Zhang-Hooks Y; Agarwal A; Ellis-Davies G; Rock J; Bergles DE
    Cell; 2015 Dec; 163(6):1348-59. PubMed ID: 26627734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental regulation of spontaneous activity in the Mammalian cochlea.
    Tritsch NX; Bergles DE
    J Neurosci; 2010 Jan; 30(4):1539-50. PubMed ID: 20107081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development.
    Babola TA; Li S; Wang Z; Kersbergen CJ; Elgoyhen AB; Coate TM; Bergles DE
    J Neurosci; 2021 Jan; 41(4):594-612. PubMed ID: 33303678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cl
    Maul A; Huebner AK; Strenzke N; Moser T; Rübsamen R; Jovanovic S; Hübner CA
    Elife; 2022 Feb; 11():. PubMed ID: 35129434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea.
    Järlebark LE; Housley GD; Raybould NP; Vlajkovic S; Thorne PR
    Neuroreport; 2002 Oct; 13(15):1979-84. PubMed ID: 12395104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NKCC1 in Neonatal Cochlear Support Cells Reloads Ions Necessary for Cochlear Spontaneous Activity.
    Kang KW; Sharma K; Park SH; Lee JK; Lee JC; Yi E
    Exp Neurobiol; 2024 Apr; 33(2):68-76. PubMed ID: 38724477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Ca
    Eckrich T; Blum K; Milenkovic I; Engel J
    Front Mol Neurosci; 2018; 11():264. PubMed ID: 30104958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear.
    Stankovic K; Rio C; Xia A; Sugawara M; Adams JC; Liberman MC; Corfas G
    J Neurosci; 2004 Oct; 24(40):8651-61. PubMed ID: 15470130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pou4f1 Defines a Subgroup of Type I Spiral Ganglion Neurons and Is Necessary for Normal Inner Hair Cell Presynaptic Ca
    Sherrill HE; Jean P; Driver EC; Sanders TR; Fitzgerald TS; Moser T; Kelley MW
    J Neurosci; 2019 Jul; 39(27):5284-5298. PubMed ID: 31085606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cell fate in the sensory epithelia of the inner ear.
    Kelley MW
    Nat Rev Neurosci; 2006 Nov; 7(11):837-49. PubMed ID: 17053809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5'-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization.
    Housley GD; Luo L; Ryan AF
    J Comp Neurol; 1998 Apr; 393(4):403-14. PubMed ID: 9550147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SGN nerve filaments develop synapses with IHCs earlier than with OHCs in C57BL/6 mouse inner ear.
    Han Z; Ding J; Cheng X; Hsieh YL; Wang CJ; Wang JY; Yang JM; Cong N; Chi FL
    Eur Rev Med Pharmacol Sci; 2020 Nov; 24(22):11496-11508. PubMed ID: 33275216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A.
    Zhang XD; Lee JH; Lv P; Chen WC; Kim HJ; Wei D; Wang W; Sihn CR; Doyle KJ; Rock JR; Chiamvimonvat N; Yamoah EN
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2575-80. PubMed ID: 25675481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs.
    Zhao HB; Yu N
    J Comp Neurol; 2006 Nov; 499(3):506-18. PubMed ID: 16998915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driving the Early Auditory Network the Old-Fashioned Way.
    MacVicar BA
    Cell; 2015 Dec; 163(6):1307-8. PubMed ID: 26638064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA gene expression in the mouse inner ear.
    Weston MD; Pierce ML; Rocha-Sanchez S; Beisel KW; Soukup GA
    Brain Res; 2006 Sep; 1111(1):95-104. PubMed ID: 16904081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2010 Feb; 130(2):196-203. PubMed ID: 20095091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical localization of adenosine 5'-triphosphate-gated ion channel P2X(2) receptor subunits in adult and developing rat cochlea.
    Järlebark LE; Housley GD; Thorne PR
    J Comp Neurol; 2000 Jun; 421(3):289-301. PubMed ID: 10813788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear.
    Dechesne CJ; Thomasset M
    Brain Res; 1988 May; 468(2):233-42. PubMed ID: 3260120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.