These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26627795)
1. Tone-burst auditory brainstem response wave V latencies in normal-hearing and hearing-impaired ears. Lewis JD; Kopun J; Neely ST; Schmid KK; Gorga MP J Acoust Soc Am; 2015 Nov; 138(5):3210-9. PubMed ID: 26627795 [TBL] [Abstract][Full Text] [Related]
2. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds. Vander Werff KR; Prieve BA; Georgantas LM Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084 [TBL] [Abstract][Full Text] [Related]
3. Tone burst auditory brain stem response latency estimates of cochlear travel time in Meniere's disease, cochlear hearing loss, and normal ears. Murray JG; Cohn ES; Harker LA; Gorga MP Am J Otol; 1998 Nov; 19(6):854-9. PubMed ID: 9831168 [TBL] [Abstract][Full Text] [Related]
4. Auditory brainstem responses to CE-Chirp® stimuli for normal ears and those with sensorineural hearing loss. Cho SW; Han KH; Jang HK; Chang SO; Jung H; Lee JH Int J Audiol; 2015; 54(10):700-4. PubMed ID: 25997814 [TBL] [Abstract][Full Text] [Related]
5. Predicting the type of hearing loss using click auditory brainstem response in babies referred from newborn hearing screening. Baldwin M; Watkin P Ear Hear; 2014; 35(1):1-9. PubMed ID: 24105268 [TBL] [Abstract][Full Text] [Related]
6. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)]. Hoth S Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275 [TBL] [Abstract][Full Text] [Related]
7. Wave V latency shifts with age and sex in normals and patients with cochlear hearing loss: development of a predictive model. Rupa V; Dayal AK Br J Audiol; 1993 Aug; 27(4):273-9. PubMed ID: 8312850 [TBL] [Abstract][Full Text] [Related]
8. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies. Don M; Ponton CW; Eggermont JJ; Kwong B J Acoust Soc Am; 1998 Oct; 104(4):2280-9. PubMed ID: 10491692 [TBL] [Abstract][Full Text] [Related]
9. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Hamdan AL; Abouchacra KS; Zeki Al Hazzouri AG; Zaytoun G Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377 [TBL] [Abstract][Full Text] [Related]
10. On the use of click-evoked electric brainstem responses in audiological diagnosis. IV. Interaural latency differences (wave V) in cochlear hearing loss. Rosenhamer HJ; Lindström B; Lundborg T Scand Audiol; 1981; 10(2):67-73. PubMed ID: 7280543 [TBL] [Abstract][Full Text] [Related]
11. Brainstem auditory evoked potentials and electrocochleographic findings in patients with idiopathic sudden sensorineural hearing loss. Habib SS; Husain A; Omar SA; Al Drees AM J Coll Physicians Surg Pak; 2011 Jul; 21(7):415-9. PubMed ID: 21777530 [TBL] [Abstract][Full Text] [Related]
12. On the use of click-evoked electric brainstem responses in audiological diagnosis. III. Latencies in cochlear hearing loss. Rosenhamer HJ; Lindström B; Lundborg T Scand Audiol; 1981; 10(1):3-11. PubMed ID: 7209370 [TBL] [Abstract][Full Text] [Related]
13. Analysis of click-evoked auditory brainstem responses using time domain cross-correlations between interleaved responses. Berninger E; Olofsson A; Leijon A Ear Hear; 2014; 35(3):318-29. PubMed ID: 24557002 [TBL] [Abstract][Full Text] [Related]
14. Comparisons of auditory brainstem response and sound level tolerance in tinnitus ears and non-tinnitus ears in unilateral tinnitus patients with normal audiograms. Shim HJ; An YH; Kim DH; Yoon JE; Yoon JH PLoS One; 2017; 12(12):e0189157. PubMed ID: 29253030 [TBL] [Abstract][Full Text] [Related]
15. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials]. Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750 [TBL] [Abstract][Full Text] [Related]
16. Effects of Secondhand Smoke Exposure on Hearing and Auditory Evoked Potentials, ABR and AMLR in Young Adults. Ramkissoon I; Batavia M J Am Acad Audiol; 2018 Sep; 29(8):685-695. PubMed ID: 30222539 [TBL] [Abstract][Full Text] [Related]
17. Auditory-evoked brainstem responses elicited by maximum-length sequences in normal and sensorineural ears. Lina-Granade G; Collet L; Morgon A Audiology; 1994; 33(4):218-36. PubMed ID: 8067927 [TBL] [Abstract][Full Text] [Related]
18. Usefulness of auditory brainstem responses at high stimulus rates in the diagnosis of acoustic neuroma. Tanaka H; Komatsuzaki A; Hentona H ORL J Otorhinolaryngol Relat Spec; 1996; 58(4):224-8. PubMed ID: 8883110 [TBL] [Abstract][Full Text] [Related]
19. Effects of sample size on the latency and amplitude of the auditory evoked response. Beattie RC; Zipp JA; Schaffer CA; Silzel KL Am J Otol; 1992 Jan; 13(1):55-67. PubMed ID: 1598987 [TBL] [Abstract][Full Text] [Related]
20. Clinical interpretation of brainstem evoked response audiometry abnormalities in cochlear pathology. Lajtman Z; Borcić V; Markov D; Popović-Kovacić J; Vincelj J; Krpan D Acta Med Croatica; 1999; 53(3):119-23. PubMed ID: 10705632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]