BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26627847)

  • 1. High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch (Taeniopygia guttata).
    Newhouse DJ; Balakrishnan CN
    BMC Evol Biol; 2015 Dec; 15():265. PubMed ID: 26627847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the zebra finch (Taeniopygia guttata).
    Balakrishnan CN; Edwards SV
    Genetics; 2009 Feb; 181(2):645-60. PubMed ID: 19047416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata).
    Ekblom R; Stapley J; Ball AD; Birkhead T; Burke T; Slate J
    Immunogenetics; 2011 Aug; 63(8):523-30. PubMed ID: 21494955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata).
    Forstmeier W; Segelbacher G; Mueller JC; Kempenaers B
    Mol Ecol; 2007 Oct; 16(19):4039-50. PubMed ID: 17894758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.
    Balakrishnan CN; Ekblom R; Völker M; Westerdahl H; Godinez R; Kotkiewicz H; Burt DW; Graves T; Griffin DK; Warren WC; Edwards SV
    BMC Biol; 2010 Apr; 8():29. PubMed ID: 20359332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations.
    Schuster AC; Herde A; Mazzoni CJ; Eccard JA; Sommer S
    Immunogenetics; 2016 Jul; 68(6-7):429-437. PubMed ID: 27225422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic diversity and differentiation of the rhesus macaque (Macaca mulatta) population in western Sichuan, China, based on the second exon of the major histocompatibility complex class II DQB (MhcMamu-DQB1) alleles.
    Yao YF; Dai QX; Li J; Ni QY; Zhang MW; Xu HL
    BMC Evol Biol; 2014 Jun; 14():130. PubMed ID: 24930092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat.
    Seddon JM; Baverstock PR
    Mol Ecol; 1999 Dec; 8(12):2071-9. PubMed ID: 10632858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae).
    Miller HC; Lambert DM
    Mol Ecol; 2004 Dec; 13(12):3709-21. PubMed ID: 15548285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.
    Sutton JT; Nakagawa S; Robertson BC; Jamieson IG
    Mol Ecol; 2011 Nov; 20(21):4408-20. PubMed ID: 21981032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The variability of song variability in zebra finch (
    Lansverk AL; Schroeder KM; London SE; Griffith SC; Clayton DF; Balakrishnan CN
    R Soc Open Sci; 2019 May; 6(5):190273. PubMed ID: 31218064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.).
    Miller HC; Allendorf F; Daugherty CH
    Mol Ecol; 2010 Sep; 19(18):3894-908. PubMed ID: 20723045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations.
    Kamath PL; Getz WM
    PLoS One; 2012; 7(12):e50971. PubMed ID: 23251409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar).
    Landry C; Bernatchez L
    Mol Ecol; 2001 Oct; 10(10):2525-39. PubMed ID: 11742552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital gene expression analysis of the zebra finch genome.
    Ekblom R; Balakrishnan CN; Burke T; Slate J
    BMC Genomics; 2010 Apr; 11():219. PubMed ID: 20359325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population.
    Niskanen AK; Kennedy LJ; Ruokonen M; Kojola I; Lohi H; Isomursu M; Jansson E; Pyhäjärvi T; Aspi J
    Mol Ecol; 2014 Feb; 23(4):875-89. PubMed ID: 24382313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relative roles of selection and genetic drift in shaping MHC variation.
    Alcaide M
    Mol Ecol; 2010 Sep; 19(18):3842-4. PubMed ID: 20854274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A temporal analysis shows major histocompatibility complex loci in the Scandinavian wolf population are consistent with neutral evolution.
    Seddon JM; Ellegren H
    Proc Biol Sci; 2004 Nov; 271(1554):2283-91. PubMed ID: 15539354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population Differences in Susceptibility to
    Hofmeister EK; Balakrishnan CN; Atkinson CT
    Avian Dis; 2018 Dec; 62(4):351-354. PubMed ID: 31119918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus.
    Biedrzycka A; Radwan J
    Mol Ecol; 2008 Nov; 17(22):4801-11. PubMed ID: 19140973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.