These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26627868)

  • 1. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.
    Park SH; Ong RG; Sticklen M
    Plant Biotechnol J; 2016 Jun; 14(6):1329-44. PubMed ID: 26627868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
    Zeng Y; Zhao S; Yang S; Ding SY
    Curr Opin Biotechnol; 2014 Jun; 27():38-45. PubMed ID: 24863895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates.
    Donohoe BS; Resch MG
    Curr Opin Chem Biol; 2015 Dec; 29():100-7. PubMed ID: 26529490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.
    Longoni P; Leelavathi S; Doria E; Reddy VS; Cella R
    Biomed Res Int; 2015; 2015():289759. PubMed ID: 26137472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant genetic engineering to improve biomass characteristics for biofuels.
    Sticklen M
    Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignins of bioenergy crops: a review?
    Guragain YN; Herrera AI; Vadlani PV; Prakash O
    Nat Prod Commun; 2015 Jan; 10(1):201-8. PubMed ID: 25920245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.
    Poovaiah CR; Nageswara-Rao M; Soneji JR; Baxter HL; Stewart CN
    Plant Biotechnol J; 2014 Dec; 12(9):1163-73. PubMed ID: 25051990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, regulation and utilization of lignocellulosic biomass.
    Harris D; DeBolt S
    Plant Biotechnol J; 2010 Apr; 8(3):244-62. PubMed ID: 20070874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.
    Wang Y; Fan C; Hu H; Li Y; Sun D; Wang Y; Peng L
    Biotechnol Adv; 2016; 34(5):997-1017. PubMed ID: 27269671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant cell wall polymers as precursors for biofuels.
    Pauly M; Keegstra K
    Curr Opin Plant Biol; 2010 Jun; 13(3):305-12. PubMed ID: 20097119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels.
    Achyuthan KE; Achyuthan AM; Adams PD; Dirk SM; Harper JC; Simmons BA; Singh AK
    Molecules; 2010 Nov; 15(12):8641-88. PubMed ID: 21116223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulatory and transcriptional landscape associated with carbon utilization in a filamentous fungus.
    Wu VW; Thieme N; Huberman LB; Dietschmann A; Kowbel DJ; Lee J; Calhoun S; Singan VR; Lipzen A; Xiong Y; Monti R; Blow MJ; O'Malley RC; Grigoriev IV; Benz JP; Glass NL
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6003-6013. PubMed ID: 32111691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy.
    Carpita NC
    Curr Opin Biotechnol; 2012 Jun; 23(3):330-7. PubMed ID: 22209015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic engineering of grass cell wall polysaccharides for biorefining.
    Bhatia R; Gallagher JA; Gomez LD; Bosch M
    Plant Biotechnol J; 2017 Sep; 15(9):1071-1092. PubMed ID: 28557198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.
    Moreno AD; Ibarra D; Alvira P; Tomás-Pejó E; Ballesteros M
    Crit Rev Biotechnol; 2015; 35(3):342-54. PubMed ID: 24506661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.