These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 26627888)
21. ENDOR spectroscopy and DFT calculations: evidence for the hydrogen-bond network within α2 in the PCET of E. coli ribonucleotide reductase. Argirević T; Riplinger C; Stubbe J; Neese F; Bennati M J Am Chem Soc; 2012 Oct; 134(42):17661-70. PubMed ID: 23072506 [TBL] [Abstract][Full Text] [Related]
22. Perturbations of aromatic amino acids are associated with iron cluster assembly in ribonucleotide reductase. Offenbacher AR; Chen J; Barry BA J Am Chem Soc; 2011 May; 133(18):6978-88. PubMed ID: 21486062 [TBL] [Abstract][Full Text] [Related]
23. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. Greene BL; Taguchi AT; Stubbe J; Nocera DG J Am Chem Soc; 2017 Nov; 139(46):16657-16665. PubMed ID: 29037038 [TBL] [Abstract][Full Text] [Related]
24. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase. Olshansky L; Pizano AA; Wei Y; Stubbe J; Nocera DG J Am Chem Soc; 2014 Nov; 136(46):16210-6. PubMed ID: 25353063 [TBL] [Abstract][Full Text] [Related]
25. Reverse Electron Transfer Completes the Catalytic Cycle in a 2,3,5-Trifluorotyrosine-Substituted Ribonucleotide Reductase. Ravichandran KR; Minnihan EC; Wei Y; Nocera DG; Stubbe J J Am Chem Soc; 2015 Nov; 137(45):14387-95. PubMed ID: 26492582 [TBL] [Abstract][Full Text] [Related]
26. PELDOR spectroscopy with DOPA-beta2 and NH2Y-alpha2s: distance measurements between residues involved in the radical propagation pathway of E. coli ribonucleotide reductase. Seyedsayamdost MR; Chan CT; Mugnaini V; Stubbe J; Bennati M J Am Chem Soc; 2007 Dec; 129(51):15748-9. PubMed ID: 18047343 [TBL] [Abstract][Full Text] [Related]
27. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale. Pagba CV; McCaslin TG; Chi SH; Perry JW; Barry BA J Phys Chem B; 2016 Feb; 120(7):1259-72. PubMed ID: 26886811 [TBL] [Abstract][Full Text] [Related]
28. pH Rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. Seyedsayamdost MR; Yee CS; Reece SY; Nocera DG; Stubbe J J Am Chem Soc; 2006 Feb; 128(5):1562-8. PubMed ID: 16448127 [TBL] [Abstract][Full Text] [Related]
30. Generation of the R2 subunit of ribonucleotide reductase by intein chemistry: insertion of 3-nitrotyrosine at residue 356 as a probe of the radical initiation process. Yee CS; Seyedsayamdost MR; Chang MC; Nocera DG; Stubbe J Biochemistry; 2003 Dec; 42(49):14541-52. PubMed ID: 14661967 [TBL] [Abstract][Full Text] [Related]
31. Site-specific replacement of Y356 with 3,4-dihydroxyphenylalanine in the beta2 subunit of E. coli ribonucleotide reductase. Seyedsayamdost MR; Stubbe J J Am Chem Soc; 2006 Mar; 128(8):2522-3. PubMed ID: 16492021 [TBL] [Abstract][Full Text] [Related]
32. Modulation of Y356 photooxidation in E. coli class Ia ribonucleotide reductase by Y731 across the α2:β2 interface. Pizano AA; Olshansky L; Holder PG; Stubbe J; Nocera DG J Am Chem Soc; 2013 Sep; 135(36):13250-3. PubMed ID: 23927429 [TBL] [Abstract][Full Text] [Related]
33. Structure and Function of Tryptophan-Tyrosine Dyads in Biomimetic β Hairpins. McCaslin TG; Pagba CV; Chi SH; Hwang HJ; Gumbart JC; Perry JW; Olivieri C; Porcelli F; Veglia G; Guo Z; McDaniel M; Barry BA J Phys Chem B; 2019 Apr; 123(13):2780-2791. PubMed ID: 30888824 [TBL] [Abstract][Full Text] [Related]
34. Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase. Reece SY; Lutterman DA; Seyedsayamdost MR; Stubbe J; Nocera DG Biochemistry; 2009 Jun; 48(25):5832-8. PubMed ID: 19402704 [TBL] [Abstract][Full Text] [Related]
35. Structure and function of the Escherichia coli ribonucleotide reductase protein R2. Nordlund P; Eklund H J Mol Biol; 1993 Jul; 232(1):123-64. PubMed ID: 8331655 [TBL] [Abstract][Full Text] [Related]
36. Photoactive peptides for light-initiated tyrosyl radical generation and transport into ribonucleotide reductase. Reece SY; Seyedsayamdost MR; Stubbe J; Nocera DG J Am Chem Soc; 2007 Jul; 129(27):8500-9. PubMed ID: 17567129 [TBL] [Abstract][Full Text] [Related]
37. Proton-coupled electron transfer in tyrosine and a β-hairpin maquette: reaction dynamics on the picosecond time scale. Pagba CV; Chi SH; Perry J; Barry BA J Phys Chem B; 2015 Feb; 119(6):2726-36. PubMed ID: 25437178 [TBL] [Abstract][Full Text] [Related]
38. High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Denysenkov VP; Prisner TF; Stubbe J; Bennati M Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13386-90. PubMed ID: 16938868 [TBL] [Abstract][Full Text] [Related]
39. pH Dependence of charge transfer between tryptophan and tyrosine in dipeptides. Reece SY; Stubbe J; Nocera DG Biochim Biophys Acta; 2005 Feb; 1706(3):232-8. PubMed ID: 15694351 [TBL] [Abstract][Full Text] [Related]
40. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Hu X; Spiro TG Biochemistry; 1997 Dec; 36(50):15701-12. PubMed ID: 9398299 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]