These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26627932)

  • 1. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.
    Farrell AC; Senanayake P; Hung CH; El-Howayek G; Rajagopal A; Currie M; Hayat MM; Huffaker DL
    Sci Rep; 2015 Dec; 5():17580. PubMed ID: 26627932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product.
    Hayat MM; Ramirez DA
    Opt Express; 2012 Mar; 20(7):8024-40. PubMed ID: 22453474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchrotron Radiation Study of Gain, Noise, and Collection Efficiency of GaAs SAM-APDs with Staircase Structure.
    Colja M; Cautero M; Menk RH; Palestri P; Gianoncelli A; Antonelli M; Biasiol G; Dal Zilio S; Steinhartova T; Nichetti C; Arfelli F; De Angelis D; Driussi F; Bonanni V; Pilotto A; Gariani G; Carrato S; Cautero G
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High gain and low excess noise InGaAs/InP avalanche photodiode with lateral impact ionization.
    Wang R; Tian Y; Li Q; Zhao Y
    Appl Opt; 2020 Mar; 59(7):1980-1984. PubMed ID: 32225716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carrier injection profile on low noise thin Al
    Pinel LLG; Dimler SJ; Zhou X; Abdullah S; Zhang S; Tan CH; Ng JS
    Opt Express; 2018 Feb; 26(3):3568-3576. PubMed ID: 29401884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure.
    Hwang JD; Wu MS
    Nanotechnology; 2021 Jan; 32(1):015503. PubMed ID: 32947275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fabrication and Characterization of InAlAs/InGaAs APDs Based on a Mesa-Structure with Polyimide Passivation.
    Liu JJ; Ho WJ; Chen JY; Lin JN; Teng CJ; Yu CC; Li YC; Chang MJ
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes.
    Ker PJ; David JP; Tan CH
    Opt Express; 2012 Dec; 20(28):29568. PubMed ID: 23388783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes.
    Cao S; Zhao Y; Ur Rehman S; Feng S; Zuo Y; Li C; Zhang L; Cheng B; Wang Q
    Nanoscale Res Lett; 2018 May; 13(1):158. PubMed ID: 29785568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared avalanche photodiodes from bulk to 2D materials.
    Martyniuk P; Wang P; Rogalski A; Gu Y; Jiang R; Wang F; Hu W
    Light Sci Appl; 2023 Aug; 12(1):212. PubMed ID: 37652900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-normal illuminated pseudo-planar Ge-on-Si avalanche photodiodes with high gain and low noise.
    Fleming F; Yi X; Mirza MMA; Jin X; Kirdoda J; Dumas DCS; Saalbach L; Modak M; Muir DAS; Smith C; Coughlan C; Tian Q; Millar RW; David JPR; Paul DJ; Buller GS
    Opt Express; 2024 May; 32(11):19449-19457. PubMed ID: 38859079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-photon detection using InAs avalanche photodiodes.
    Tan CH; Velichko A; Lim LW; Ng JS
    Opt Express; 2019 Feb; 27(4):5835-5842. PubMed ID: 30876178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of intrinsic avalanche noise.
    Hunt DC; Tanioka K; Rowlands JA
    Med Phys; 2007 Dec; 34(12):4654-63. PubMed ID: 18196793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Back-illuminated AlGaN heterostructure solar-blind avalanche photodiodes with one-dimensional photonic crystal filter.
    Cai Q; Luo W; Yuan R; You H; Li Q; Li M; Chen D; Lu H; Zhang R; Zheng Y
    Opt Express; 2020 Mar; 28(5):6027-6035. PubMed ID: 32225860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes.
    Cao S; Zhao Y; Feng S; Zuo Y; Zhang L; Cheng B; Li C
    Nanoscale Res Lett; 2019 Jan; 14(1):3. PubMed ID: 30607636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product.
    Zaoui WS; Chen HW; Bowers JE; Kang Y; Morse M; Paniccia MJ; Pauchard A; Campbell JC
    Opt Express; 2009 Jul; 17(15):12641-9. PubMed ID: 19654668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes.
    Namekata N; Takesue H; Honjo T; Tokura Y; Inoue S
    Opt Express; 2011 May; 19(11):10632-9. PubMed ID: 21643318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination.
    Zhao Y; Zhang D; Qin L; Tang Q; Wu RH; Liu J; Zhang Y; Zhang H; Yuan X; Liu W
    Opt Express; 2011 Apr; 19(9):8546-56. PubMed ID: 21643105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.