These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26627966)

  • 1. Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO2(111).
    Wang T; Reuter K
    J Chem Phys; 2015 Nov; 143(20):204702. PubMed ID: 26627966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).
    Hess F; Farkas A; Seitsonen AP; Over H
    J Comput Chem; 2012 Mar; 33(7):757-66. PubMed ID: 22253041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface nanostructure on temperature programmed reaction spectroscopy: first-principles kinetic monte Carlo simulations of CO oxidation at RuO2(110).
    Rieger M; Rogal J; Reuter K
    Phys Rev Lett; 2008 Jan; 100(1):016105. PubMed ID: 18232791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) with first-principles kinetic Monte Carlo.
    Matera S; Meskine H; Reuter K
    J Chem Phys; 2011 Feb; 134(6):064713. PubMed ID: 21322727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.
    Schaefer C; Jansen AP
    J Chem Phys; 2013 Feb; 138(5):054102. PubMed ID: 23406093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic oxidation at surfaces: insight from first-principles statistical mechanics (abstract only).
    Rogal J
    J Phys Condens Matter; 2008 Feb; 20(6):064240. PubMed ID: 21693901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics.
    Reuter K; Frenkel D; Scheffler M
    Phys Rev Lett; 2004 Sep; 93(11):116105. PubMed ID: 15447359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis.
    Hoffmann MJ; Engelmann F; Matera S
    J Chem Phys; 2017 Jan; 146(4):044118. PubMed ID: 28147552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of RuO2(100) in surface oxidation and CO oxidation catalysis on Ru(0001).
    Flege JI; Lachnitt J; Mazur D; Sutter P; Falta J
    Phys Chem Chem Phys; 2016 Jan; 18(1):213-9. PubMed ID: 26601756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A More Accurate Kinetic Monte Carlo Approach to a Monodimensional Surface Reaction: The Interaction of Oxygen with the RuO
    Pogodin S; López N
    ACS Catal; 2014 Jul; 4(7):2328-2332. PubMed ID: 25061545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles-based kinetic Monte Carlo simulations of CO oxidation on catalytic Au(110) and Ag(110) surfaces.
    Fajín JLC; Moura AS; Cordeiro MNDS
    Phys Chem Chem Phys; 2021 Jul; 23(25):14037-14050. PubMed ID: 34151916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures.
    Liu H; Iglesia E
    J Phys Chem B; 2005 Feb; 109(6):2155-63. PubMed ID: 16851207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).
    Weaver JF; Zhang F; Pan L; Li T; Asthagiri A
    Acc Chem Res; 2015 May; 48(5):1515-23. PubMed ID: 25933250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure sensitivity in the oxidation of CO on Ir surfaces.
    Chen W; Ermanoski I; Jacob T; Madey TE
    Langmuir; 2006 Mar; 22(7):3166-73. PubMed ID: 16548573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inert species in the gas phase in a model for the catalytic oxidation of CO.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031143. PubMed ID: 22587074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On factors controlling activity of submonolayer bimetallic catalysts: nitrogen desorption.
    Guo W; Vlachos DG
    J Chem Phys; 2014 Jan; 140(1):014703. PubMed ID: 24410233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.
    Pandey SC; Singh T; Maroudas D
    J Chem Phys; 2009 Jul; 131(3):034503. PubMed ID: 19624205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions.
    Nielsen J; d'Avezac M; Hetherington J; Stamatakis M
    J Chem Phys; 2013 Dec; 139(22):224706. PubMed ID: 24329081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.