BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26628051)

  • 1. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.
    Farzana R; Rajarao R; Sahajwalla V
    Waste Manag Res; 2016 Feb; 34(2):113-21. PubMed ID: 26628051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation.
    Swain B; Ryang Park J; Yoon Shin D; Park KS; Hwan Hong M; Gi Lee C
    Environ Res; 2015 Oct; 142():615-23. PubMed ID: 26318256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and recovery of copper values from discarded slag.
    Das B; Mishra BK; Angadi S; Pradhan SK; Prakash S; Mohanty J
    Waste Manag Res; 2010 Jun; 28(6):561-7. PubMed ID: 19748952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.
    Ippolito NM; Belardi G; Medici F; Piga L
    Waste Manag; 2016 May; 51():182-189. PubMed ID: 26777778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.
    Mukharjee BB; Barai SV
    Waste Manag Res; 2015 Jun; 33(6):515-23. PubMed ID: 25986048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling dredged harbor sediment to construction materials by sintering with steel slag and waste glass: Characteristics, alkali-silica reactivity and metals stability.
    Lim YC; Shih YJ; Tsai KC; Yang WD; Chen CW; Dong CD
    J Environ Manage; 2020 Sep; 270():110869. PubMed ID: 32507745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.
    Teo PT; Anasyida AS; Basu P; Nurulakmal MS
    Waste Manag; 2014 Dec; 34(12):2697-708. PubMed ID: 25242607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of metal values from copper slag and reuse of residual secondary slag.
    Sarfo P; Das A; Wyss G; Young C
    Waste Manag; 2017 Dec; 70():272-281. PubMed ID: 28988605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallurgical use of glass fractions from waste electric and electronic equipment (WEEE).
    Mostaghel S; Samuelsson C
    Waste Manag; 2010 Jan; 30(1):140-4. PubMed ID: 19850461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automotive shredder residue (ASR) management: An overview.
    Cossu R; Lai T
    Waste Manag; 2015 Nov; 45():143-51. PubMed ID: 26294011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of sugarcane bagasse ash waste in the production of clay bricks.
    Faria KC; Gurgel RF; Holanda JN
    J Environ Manage; 2012 Jun; 101():7-12. PubMed ID: 22387325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective utilization of the slag from acid leaching of coal-waste: preparation of water glass with a low-temperature co-melting reaction.
    Fang L; Duan X; Chen R; Cheng F
    J Air Waste Manag Assoc; 2014 Aug; 64(8):887-93. PubMed ID: 25185391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network modeling for reverse flows of end-of-life vehicles.
    Ene S; Öztürk N
    Waste Manag; 2015 Apr; 38():284-96. PubMed ID: 25659298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of iron foundry sand and glass waste as raw material for production of whiteware.
    Bragança SR; Vicenzi J; Guerino K; Bergmann CP
    Waste Manag Res; 2006 Feb; 24(1):60-6. PubMed ID: 16496871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards.
    Zheng Y; Shen Z; Ma S; Cai C; Zhao X; Xing Y
    J Hazard Mater; 2009 Oct; 170(2-3):978-82. PubMed ID: 19520504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zeolite materials prepared using silicate waste from template synthesis of ordered mesoporous carbon.
    Kim YK; Rajesh KP; Yu JS
    J Hazard Mater; 2013 Sep; 260():350-7. PubMed ID: 23792927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.
    Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM
    J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of lead from cathode ray tube funnel glass by combined thermal treatment and leaching processes.
    Okada T; Nishimura F; Yonezawa S
    Waste Manag; 2015 Nov; 45():343-50. PubMed ID: 26022339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals' valorisation.
    Vermeulen I; Van Caneghem J; Block C; Baeyens J; Vandecasteele C
    J Hazard Mater; 2011 Jun; 190(1-3):8-27. PubMed ID: 21440364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.