BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26628052)

  • 1. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.
    Tan Q; Li J
    Waste Manag Res; 2016 Jan; 34(1):67-74. PubMed ID: 26628052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury risk from fluorescent lamps in China: current status and future perspective.
    Hu Y; Cheng H
    Environ Int; 2012 Sep; 44():141-50. PubMed ID: 22321538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury Pollution, Treatment and Solutions in Spent Fluorescent Lamps in Mainland China.
    Li Z; Jia P; Zhao F; Kang Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30720797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Development Path of the Lighting Industry in Mainland China: Execution of Energy Conservation and Management on Mercury Emission.
    Li Z; Jia P; Zhao F; Kang Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30558339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.
    Asari M; Fukui K; Sakai S
    Sci Total Environ; 2008 Apr; 393(1):1-10. PubMed ID: 18237763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of mercury amount in the components of spent U-type lamp.
    Rhee SW
    Environ Technol; 2017 May; 38(10):1305-1312. PubMed ID: 27608735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study.
    Grigoropoulos CJ; Doulos LT; Zerefos SC; Tsangrassoulis A; Bhusal P
    Waste Manag; 2020 Jan; 101():188-199. PubMed ID: 31622864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of non-gaseous and gaseous mercury fractions in unused fluorescent lamps: a study of different lamp types.
    Figi R; Nagel O; Schreiner C; Hagendorfer H
    Waste Manag Res; 2015 Mar; 33(3):295-9. PubMed ID: 25698790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: some strategies for improving current conditions.
    Taghipour H; Amjad Z; Jafarabadi MA; Gholampour A; Norouz P
    Waste Manag; 2014 Jul; 34(7):1251-6. PubMed ID: 24726659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fate and management of high mercury-containing lamps from high technology industry.
    Chang TC; You SJ; Yu BS; Kong HW
    J Hazard Mater; 2007 Mar; 141(3):784-92. PubMed ID: 16979288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of retorted phosphor powder from spent fluorescent lamps by thermal process.
    Park HS; Rhee SW
    Waste Manag; 2016 Apr; 50():257-63. PubMed ID: 26882866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling oriented comparison of mercury distribution in new and spent fluorescent lamps and their potential risk.
    Hobohm J; Krüger O; Basu S; Kuchta K; van Wasen S; Adam C
    Chemosphere; 2017 Feb; 169():618-626. PubMed ID: 27912186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.
    Rey-Raap N; Gallardo A
    Waste Manag; 2012 May; 32(5):944-8. PubMed ID: 22206740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury recovery from cold cathode fluorescent lamps using thermal desorption technology.
    Chang TC; Chen CM; Lee YF; You SJ
    Waste Manag Res; 2010 May; 28(5):455-60. PubMed ID: 19723829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing mercury vapor release from broken fluorescent lamps during shipping.
    Glenz TT; Brosseau LM; Hoffbeck RW
    J Air Waste Manag Assoc; 2009 Mar; 59(3):266-72. PubMed ID: 19320265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Laboratory control during the removal of mercury from fluorescent lamps].
    Chubirko MI; Basova GM; Zabugina LA; Krestnikova TV; Kolina SI; Popova TA
    Gig Sanit; 1996; (3):40-1. PubMed ID: 8925966
    [No Abstract]   [Full Text] [Related]  

  • 18. Anthropogenic mercury flows in India and impacts of emission controls.
    Burger Chakraborty L; Qureshi A; Vadenbo C; Hellweg S
    Environ Sci Technol; 2013 Aug; 47(15):8105-13. PubMed ID: 23834017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China.
    Chen S; Zhang J; Kim J
    Sci Total Environ; 2017 Jan; 575():467-473. PubMed ID: 27751692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial assessment of net mercury emissions from the use of fluorescent bulbs.
    Eckelman MJ; Anastas PT; Zimmerman JB
    Environ Sci Technol; 2008 Nov; 42(22):8564-70. PubMed ID: 19068849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.