These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26628052)

  • 21. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.
    Tunsu C; Ekberg C; Foreman M; Retegan T
    Waste Manag; 2015 Feb; 36():289-96. PubMed ID: 25443097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Treating high-mercury-containing lamps using full-scale thermal desorption technology.
    Chang TC; You SJ; Yu BS; Chen CM; Chiu YC
    J Hazard Mater; 2009 Mar; 162(2-3):967-72. PubMed ID: 18603361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ignoring emissions of Hg from coal ash and desulfurized gypsum will lead to ineffective mercury control in coal-fired power plants in China.
    Yang Y; Huang Q; Wang Q
    Environ Sci Technol; 2012 Mar; 46(6):3058-9. PubMed ID: 22428843
    [No Abstract]   [Full Text] [Related]  

  • 24. Characterization of residues from physicochemical treatment of waste fluorescent lamps.
    Urniezaite I; Denafas G; Jankunaite D
    Waste Manag Res; 2010 Jul; 28(7):609-14. PubMed ID: 19710106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury in municipal solid waste in China and its control: a review.
    Cheng H; Hu Y
    Environ Sci Technol; 2012 Jan; 46(2):593-605. PubMed ID: 22136661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020.
    Pacyna EG; Pacyna JM; Fudala J; Strzelecka-Jastrzab E; Hlawiczka S; Panasiuk D
    Sci Total Environ; 2006 Oct; 370(1):147-56. PubMed ID: 16887169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling research on spent fluorescent lamps on the basis of extended producer responsibility in China.
    Peng L; Wang Y; Chang CT
    J Air Waste Manag Assoc; 2014 Nov; 64(11):1299-308. PubMed ID: 25509551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs).
    Salthammer T; Uhde E; Omelan A; Lüdecke A; Moriske HJ
    Indoor Air; 2012 Aug; 22(4):289-98. PubMed ID: 22188528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.
    Arendt JD; Katers JF
    Waste Manag Res; 2013 Jul; 31(7):764-72. PubMed ID: 23635464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stocks and environmental release of mercury in backlight cold cathode fluorescence lamps.
    Zhuang X; Wang Y; Yuan W; Bai J; Wang J
    Waste Manag Res; 2018 Sep; 36(9):849-856. PubMed ID: 30014768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China.
    Zheng J; Ou J; Mo Z; Yin S
    Sci Total Environ; 2011 Dec; 412-413():214-22. PubMed ID: 22078372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.
    Al-Ghouti MA; Abuqaoud RH; Abu-Dieyeh MH
    Waste Manag; 2016 Mar; 49():238-244. PubMed ID: 26725036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing occupational mercury exposures during the on-site processing of spent fluorescent lamps.
    Lucas A; Emery R
    J Environ Health; 2006 Mar; 68(7):30-4, 40, 45. PubMed ID: 16583552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of mercury bonded in residual glass from spent fluorescent lamps.
    Rey-Raap N; Gallardo A
    J Environ Manage; 2013 Jan; 115():175-8. PubMed ID: 23262405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination.
    Lecler MT; Zimmermann F; Silvente E; Masson A; Morèle Y; Remy A; Chollot A
    Waste Manag; 2018 Jun; 76():250-260. PubMed ID: 29496382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of mercury emission from linear type of spent fluorescent lamp.
    Rhee SW; Choi HH; Park HS
    Waste Manag; 2014 Jun; 34(6):1066-71. PubMed ID: 24053901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shedding some light on mercury lamps.
    Christen K
    Environ Sci Technol; 2006 Oct; 40(19):5829. PubMed ID: 17051763
    [No Abstract]   [Full Text] [Related]  

  • 39. Atmospheric mercury pollution caused by fluorescent lamp manufacturing and the associated human health risk in a large industrial and commercial city.
    Luo Q; Ren Y; Sun Z; Li Y; Li B; Yang S; Zhang W; Hu Y; Cheng H
    Environ Pollut; 2021 Jan; 269():116146. PubMed ID: 33316504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs).
    Nance P; Patterson J; Willis A; Foronda N; Dourson M
    Regul Toxicol Pharmacol; 2012 Apr; 62(3):542-52. PubMed ID: 22142629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.