BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26628053)

  • 1. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.
    Tabata T; Tsai P
    Waste Manag Res; 2016 Feb; 34(2):148-55. PubMed ID: 26628053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.
    de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE
    Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia--Thrace in Greece.
    Athanasiou CJ; Tsalkidis DA; Kalogirou E; Voudrias EA
    Waste Manag Res; 2015 Jun; 33(6):561-9. PubMed ID: 26060234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.
    Panepinto D; Genon G
    Waste Manag Res; 2014 Jul; 32(7):670-80. PubMed ID: 24942837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy recovery from waste incineration: assessing the importance of district heating networks.
    Fruergaard T; Christensen TH; Astrup T
    Waste Manag; 2010 Jul; 30(7):1264-72. PubMed ID: 20385481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.
    Tabata T
    Waste Manag Res; 2013 Nov; 31(11):1110-7. PubMed ID: 24025369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of municipal solid waste incinerators in replacing other fuels. A primary energy balance approach for the EU28.
    Di Maria F; Sisani F
    Waste Manag Res; 2018 Oct; 36(10):942-951. PubMed ID: 30044198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration.
    Panepinto D; Zanetti MC
    Waste Manag; 2018 Mar; 73():332-341. PubMed ID: 28774585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
    Leckner B
    Waste Manag; 2015 Mar; 37():13-25. PubMed ID: 24846797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the dynamic electricity revenue inefficiencies of Taiwan's municipal solid waste incineration plants using data envelopment analysis.
    Yeh LT
    Waste Manag; 2020 Apr; 107():28-35. PubMed ID: 32276123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.
    Schwarzböck T; Van Eygen E; Rechberger H; Fellner J
    Waste Manag Res; 2017 Feb; 35(2):207-216. PubMed ID: 27474393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.
    Inglezakis VJ; Rojas-Solórzano L; Kim J; Aitbekova A; Ismailova A
    Waste Manag Res; 2015 May; 33(5):486-94. PubMed ID: 25819927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity production from municipal solid waste in Brazil.
    Nordi GH; Palacios-Bereche R; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Jul; 35(7):709-720. PubMed ID: 28553775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
    Medina Jimenez AC; Nordi GH; Palacios Bereche MC; Bereche RP; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Nov; 35(11):1137-1148. PubMed ID: 28893135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.
    Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S
    Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demand for waste as fuel in the swedish district heating sector: a production function approach.
    Furtenback O
    Waste Manag; 2009 Jan; 29(1):285-92. PubMed ID: 18442900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and energy performances of the Italian municipal solid waste incineration system in a life cycle perspective.
    Sisani F; Maalouf A; Di Maria F
    Waste Manag Res; 2022 Feb; 40(2):218-226. PubMed ID: 33845709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.