These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 26628169)
1. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method. Rosendahl S; Brown E; Cristescu I; Fieguth A; Huhmann C; Lebeda O; Murra M; Weinheimer C Rev Sci Instrum; 2015 Nov; 86(11):115104. PubMed ID: 26628169 [TBL] [Abstract][Full Text] [Related]
2. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors. Wang Z; Bao L; Hao X; Ju Y Rev Sci Instrum; 2014 Jan; 85(1):015116. PubMed ID: 24517821 [TBL] [Abstract][Full Text] [Related]
3. Spatially uniform calibration of a liquid xenon detector at low energies using (83m)Kr. Manalaysay A; Undagoitia TM; Askin A; Baudis L; Behrens A; Ferella AD; Kish A; Lebeda O; Santorelli R; Vénos D; Vollhardt A Rev Sci Instrum; 2010 Jul; 81(7):073303. PubMed ID: 20687713 [TBL] [Abstract][Full Text] [Related]
4. PandaX-4T cryogenic distillation system for removing krypton from xenon. Yan R; Wang Z; Cui X; Ju Y; Sha H; Li S; Huang P; Wang X; Ma W; Fan Y; Zhao L; Liu J; Ji X; Zhou J; Shang C; Liu L Rev Sci Instrum; 2021 Dec; 92(12):123303. PubMed ID: 34972391 [TBL] [Abstract][Full Text] [Related]
5. Potential of metal-organic frameworks for separation of xenon and krypton. Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165 [TBL] [Abstract][Full Text] [Related]
6. Metal-organic framework with optimally selective xenon adsorption and separation. Banerjee D; Simon CM; Plonka AM; Motkuri RK; Liu J; Chen X; Smit B; Parise JB; Haranczyk M; Thallapally PK Nat Commun; 2016 Jun; 7():ncomms11831. PubMed ID: 27291101 [TBL] [Abstract][Full Text] [Related]
7. Analysis of krypton-85 and krypton-81 in a few liters of air. Tu LY; Yang GM; Cheng CF; Liu GL; Zhang XY; Hu SM Anal Chem; 2014 Apr; 86(8):4002-7. PubMed ID: 24641193 [TBL] [Abstract][Full Text] [Related]
8. Efficient Xe/Kr Separation Based on a Lanthanide-Organic Framework with One-Dimensional Local Positively Charged Rhomboid Channels. Wang X; Ma F; Xiong S; Bai Z; Zhang Y; Li G; Chen J; Yuan M; Wang Y; Dai X; Chai Z; Wang S ACS Appl Mater Interfaces; 2022 May; 14(19):22233-22241. PubMed ID: 35507505 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic exploration of xenon/krypton separation based on a high-throughput screening. Ren E; Coudert FX Faraday Discuss; 2021 Oct; 231(0):201-223. PubMed ID: 34195736 [TBL] [Abstract][Full Text] [Related]
10. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. Lee SJ; Yoon TU; Kim AR; Kim SY; Cho KH; Hwang YK; Yeon JW; Bae YS J Hazard Mater; 2016 Dec; 320():513-520. PubMed ID: 27597151 [TBL] [Abstract][Full Text] [Related]
11. Ion-Exchanged SAPO-34 Membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes. Kwon YH; Min B; Yang S; Koh DY; Bhave RR; Nair S ACS Appl Mater Interfaces; 2018 Feb; 10(7):6361-6368. PubMed ID: 29378111 [TBL] [Abstract][Full Text] [Related]
12. An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors. Aprile E; Yoon T; Loose A; Goetzke LW; Zelevinsky T Rev Sci Instrum; 2013 Sep; 84(9):093105. PubMed ID: 24089814 [TBL] [Abstract][Full Text] [Related]
13. Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes. Anderson R; Schweitzer B; Wu T; Carreon MA; Gómez-Gualdrón DA ACS Appl Mater Interfaces; 2018 Jan; 10(1):582-592. PubMed ID: 29256241 [TBL] [Abstract][Full Text] [Related]
15. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129. Six JS; Hughes-Riley T; Stupic KF; Pavlovskaya GE; Meersmann T PLoS One; 2012; 7(11):e49927. PubMed ID: 23209620 [TBL] [Abstract][Full Text] [Related]
16. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Rogers NJ; Hill-Casey F; Stupic KF; Six JS; Lesbats C; Rigby SP; Fraissard J; Pavlovskaya GE; Meersmann T Proc Natl Acad Sci U S A; 2016 Mar; 113(12):3164-8. PubMed ID: 26961001 [TBL] [Abstract][Full Text] [Related]
17. High-Silica CHA Zeolite Membrane with Ultra-High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Wang X; Zhou T; Zhang P; Yan W; Li Y; Peng L; Veerman D; Shi M; Gu X; Kapteijn F Angew Chem Int Ed Engl; 2021 Apr; 60(16):9032-9037. PubMed ID: 33529488 [TBL] [Abstract][Full Text] [Related]
18. Method for purification of krypton from environmental samples for analysis of radiokrypton isotopes. Yokochi R; Heraty LJ; Sturchio NC Anal Chem; 2008 Nov; 80(22):8688-93. PubMed ID: 18947236 [TBL] [Abstract][Full Text] [Related]
19. Separation of Xe from Kr with Record Selectivity and Productivity in Anion-Pillared Ultramicroporous Materials by Inverse Size-Sieving. Wang Q; Ke T; Yang L; Zhang Z; Cui X; Bao Z; Ren Q; Yang Q; Xing H Angew Chem Int Ed Engl; 2020 Feb; 59(9):3423-3428. PubMed ID: 31746086 [TBL] [Abstract][Full Text] [Related]
20. Radioactive krypton and xenon trapping by cryogenic technics. Mantel J; Cook KJ; Corrigan KE Radiology; 1968 Mar; 90(3):590-1. PubMed ID: 5642301 [No Abstract] [Full Text] [Related] [Next] [New Search]