These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26628172)

  • 1. Ultrafast image-based dynamic light scattering for nanoparticle sizing.
    Zhou W; Zhang J; Liu L; Cai X
    Rev Sci Instrum; 2015 Nov; 86(11):115107. PubMed ID: 26628172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the mean aspect ratio and two characteristic dimensions of polydisperse arbitrary shaped nanoparticles, using translational-rotational ultrafast image-based dynamic light scattering.
    Briard P; Liu Z; Cai X
    Nanotechnology; 2020 Sep; 31(39):395709. PubMed ID: 32512545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Sizing of Nanoparticle Adjuvant Formulations by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA).
    Chan MY; Dowling QM; Sivananthan SJ; Kramer RM
    Methods Mol Biol; 2017; 1494():239-252. PubMed ID: 27718198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.
    Anderson W; Kozak D; Coleman VA; Jämting ÅK; Trau M
    J Colloid Interface Sci; 2013 Sep; 405():322-30. PubMed ID: 23759321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.
    Zheng T; Bott S; Huo Q
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21585-94. PubMed ID: 27472008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical impacts complement light scattering techniques for in situ nanoparticle sizing.
    Xie R; Batchelor-McAuley C; Young NP; Compton RG
    Nanoscale; 2019 Jan; 11(4):1720-1727. PubMed ID: 30623944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a standard method for nanoparticle sizing by using the angular dependence of dynamic light scattering.
    Takahashi K; Kato H; Kinugasa S
    Anal Sci; 2011; 27(7):751. PubMed ID: 21747185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilizer-induced viscosity alteration biases nanoparticle sizing via dynamic light scattering.
    Fillafer C; Wirth M; Gabor F
    Langmuir; 2007 Aug; 23(17):8699-702. PubMed ID: 17645357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving power of dynamic light scattering for protein and polystyrene nanoparticles.
    Karow AR; Götzl J; Garidel P
    Pharm Dev Technol; 2015 Jan; 20(1):84-9. PubMed ID: 24773236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipets.
    Terejánszky P; Makra I; Fürjes P; Gyurcsányi RE
    Anal Chem; 2014 May; 86(10):4688-97. PubMed ID: 24773609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization.
    Camli ST; Buyukserin F; Balci O; Budak GG
    J Colloid Interface Sci; 2010 Apr; 344(2):528-32. PubMed ID: 20138293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of dynamic light scattering to the study of small marine particles.
    Stramski D; Sedlák M
    Appl Opt; 1994 Jul; 33(21):4825-34. PubMed ID: 20935859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles.
    Bootz A; Vogel V; Schubert D; Kreuter J
    Eur J Pharm Biopharm; 2004 Mar; 57(2):369-75. PubMed ID: 15018998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.
    Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Gray EP; Higgins CP; Ranville JF
    Environ Sci Technol; 2012 Nov; 46(22):12272-80. PubMed ID: 22780106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy.
    McLeod E; Dincer TU; Veli M; Ertas YN; Nguyen C; Luo W; Greenbaum A; Feizi A; Ozcan A
    ACS Nano; 2015 Mar; 9(3):3265-73. PubMed ID: 25688665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image vector histogram approach to nanoparticle sizing.
    Walker JG; Huynh NT; Chen R
    Appl Opt; 2012 Feb; 51(5):651-8. PubMed ID: 22330300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An on-line measurement and control system for submerged arc spray synthesis of TiO2 nanoparticles.
    Chen LC; Ji BH
    J Nanosci Nanotechnol; 2008 Feb; 8(2):503-9. PubMed ID: 18464363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment.
    Kato H; Suzuki M; Fujita K; Horie M; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Nakamura A; Kinugasa S
    Toxicol In Vitro; 2009 Aug; 23(5):927-34. PubMed ID: 19397995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber optic dynamic light scattering from concentrated dispersions. 3: Particle sizing in concentrates.
    Thomas JC; Dimonie V
    Appl Opt; 1990 Dec; 29(36):5332-5. PubMed ID: 20577558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle sizing by focused-beam dynamic ultrasound scattering method.
    Kitao K; Norisuye T
    Ultrasonics; 2022 Dec; 126():106807. PubMed ID: 35907309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.