BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26628196)

  • 1. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.
    Chaitanya BS; Kumar S; Kaki SS; Balakrishna M; Karuna MS; Prasad RB; Sastry PS; Reddy AR
    J Agric Food Chem; 2015 Dec; 63(50):10811-21. PubMed ID: 26628196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of seed oil physicochemical characteristics among three cultivars of Jatropha curcas L].
    Chen JM; Liu L; Liu ZP; Long XH; Zheng QS; Mao YQ
    Ying Yong Sheng Tai Xue Bao; 2009 Dec; 20(12):2884-90. PubMed ID: 20353052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid profiling of developing Jatropha curcas L. seeds using (1)H NMR spectroscopy.
    Annarao S; Sidhu OP; Roy R; Tuli R; Khetrapal CL
    Bioresour Technol; 2008 Dec; 99(18):9032-5. PubMed ID: 18534845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos.
    Bates PD; Durrett TP; Ohlrogge JB; Pollard M
    Plant Physiol; 2009 May; 150(1):55-72. PubMed ID: 19329563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine.
    Oxley A; Jutfelt F; Sundell K; Olsen RE
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):115-23. PubMed ID: 17126582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.
    Liu H; Wang C; Komatsu S; He M; Liu G; Shen S
    J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol.
    Yang W; Wang G; Li J; Bates PD; Wang X; Allen DK
    Plant Physiol; 2017 May; 174(1):110-123. PubMed ID: 28325849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas.
    Maghuly F; Deák T; Vierlinger K; Pabinger S; Tafer H; Laimer M
    BMC Genomics; 2020 Apr; 21(1):290. PubMed ID: 32272887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds.
    Bates PD; Browse J
    Plant J; 2011 Nov; 68(3):387-99. PubMed ID: 21711402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine.
    Vazquez JM; Roldan ER
    Mol Reprod Dev; 1997 May; 47(1):105-12. PubMed ID: 9110321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana.
    Misra A; Khan K; Niranjan A; Nath P; Sane VA
    Phytochemistry; 2013 Dec; 96():37-45. PubMed ID: 24125179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a Lychee
    Yu XH; Cai Y; Chai J; Schwender J; Shanklin J
    Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stage-specific metabolization of triacylglycerols during seed germination of Sacha Inchi (Plukenetia volubilis L.).
    Chandrasekaran U; Liu A
    J Sci Food Agric; 2015 Jun; 95(8):1764-6. PubMed ID: 25123400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis.
    Hu Z; Ren Z; Lu C
    Plant Physiol; 2012 Apr; 158(4):1944-54. PubMed ID: 22371508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.
    Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J
    Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Oil contents and fatty acid composition in Jatropha curcas seeds collected from different regions].
    Wang ZY; Lin JM; Xu ZF
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Jun; 28(6):1045-6. PubMed ID: 18583260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds.
    Shah M; Soares EL; Carvalho PC; Soares AA; Domont GB; Nogueira FC; Campos FA
    J Proteome Res; 2015 Jun; 14(6):2557-68. PubMed ID: 25920442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of fatty acids, saccharides, and phytochemicals in Jatropha curcas seed kernel as their trimethylsilyl derivatives using gas chromatography/mass spectrometry.
    Thi HT; Le BA; Le HNT; Okitsu K; Imamura K; Takenaka N; Luu BV; Maeda Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Dec; 1102-1103():66-73. PubMed ID: 30380465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.
    Sood A; Chauhan RS
    Plant Physiol Biochem; 2015 Sep; 94():253-67. PubMed ID: 26134579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of phospholipid composition of black cumin (Nigella sativa L.) seed oil.
    Ramadan MF; Mörsel JT
    Nahrung; 2002 Aug; 46(4):240-4. PubMed ID: 12224418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.