These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1893 related articles for article (PubMed ID: 26628643)

  • 21. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9.
    Choi GCG; Zhou P; Yuen CTL; Chan BKC; Xu F; Bao S; Chu HY; Thean D; Tan K; Wong KH; Zheng Z; Wong ASL
    Nat Methods; 2019 Aug; 16(8):722-730. PubMed ID: 31308554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guide RNA functional modules direct Cas9 activity and orthogonality.
    Briner AE; Donohoue PD; Gomaa AA; Selle K; Slorach EM; Nye CH; Haurwitz RE; Beisel CL; May AP; Barrangou R
    Mol Cell; 2014 Oct; 56(2):333-339. PubMed ID: 25373540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR-Cas9 variants.
    Murugan K; Suresh SK; Seetharam AS; Severin AJ; Sashital DG
    Nucleic Acids Res; 2021 Apr; 49(7):4037-4053. PubMed ID: 33744974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
    Briner AE; Henriksen ED; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
    Fu Y; Sander JD; Reyon D; Cascio VM; Joung JK
    Nat Biotechnol; 2014 Mar; 32(3):279-284. PubMed ID: 24463574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases.
    Zhang D; Zhang H; Li T; Chen K; Qiu JL; Gao C
    Genome Biol; 2017 Oct; 18(1):191. PubMed ID: 29020979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity.
    Cerchione D; Loveluck K; Tillotson EL; Harbinski F; DaSilva J; Kelley CP; Keston-Smith E; Fernandez CA; Myer VE; Jayaram H; Steinberg BE
    PLoS One; 2020; 15(4):e0231716. PubMed ID: 32298334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA.
    Liu MS; Gong S; Yu HH; Jung K; Johnson KA; Taylor DW
    Nat Commun; 2020 Jul; 11(1):3576. PubMed ID: 32681021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A highly specific SpCas9 variant is identified by in vivo screening in yeast.
    Casini A; Olivieri M; Petris G; Montagna C; Reginato G; Maule G; Lorenzin F; Prandi D; Romanel A; Demichelis F; Inga A; Cereseto A
    Nat Biotechnol; 2018 Mar; 36(3):265-271. PubMed ID: 29431739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools.
    Cebrian-Serrano A; Davies B
    Mamm Genome; 2017 Aug; 28(7-8):247-261. PubMed ID: 28634692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.
    Pattanayak V; Lin S; Guilinger JP; Ma E; Doudna JA; Liu DR
    Nat Biotechnol; 2013 Sep; 31(9):839-43. PubMed ID: 23934178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
    Huai C; Li G; Yao R; Zhang Y; Cao M; Kong L; Jia C; Yuan H; Chen H; Lu D; Huang Q
    Nat Commun; 2017 Nov; 8(1):1375. PubMed ID: 29123204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rationally engineered
    Tan Y; Chu AHY; Bao S; Hoang DA; Kebede FT; Xiong W; Ji M; Shi J; Zheng Z
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20969-20976. PubMed ID: 31570596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal Structure of Staphylococcus aureus Cas9.
    Nishimasu H; Cong L; Yan WX; Ran FA; Zetsche B; Li Y; Kurabayashi A; Ishitani R; Zhang F; Nureki O
    Cell; 2015 Aug; 162(5):1113-26. PubMed ID: 26317473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9.
    Kaya H; Mikami M; Endo A; Endo M; Toki S
    Sci Rep; 2016 May; 6():26871. PubMed ID: 27226350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture.
    O'Geen H; Henry IM; Bhakta MS; Meckler JF; Segal DJ
    Nucleic Acids Res; 2015 Mar; 43(6):3389-404. PubMed ID: 25712100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cas9-based genome editing in Arabidopsis and tobacco.
    Li JF; Zhang D; Sheen J
    Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 95.