These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26629610)

  • 21. Long-Lived Hot Carriers in III-V Nanowires.
    Tedeschi D; De Luca M; Fonseka HA; Gao Q; Mura F; Tan HH; Rubini S; Martelli F; Jagadish C; Capizzi M; Polimeni A
    Nano Lett; 2016 May; 16(5):3085-93. PubMed ID: 27104870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast pump-probe microscopy with high temporal dynamic range.
    Domke M; Rapp S; Schmidt M; Huber HP
    Opt Express; 2012 Apr; 20(9):10330-8. PubMed ID: 22535122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy.
    Gabriel MM; Grumstrup EM; Kirschbrown JR; Pinion CW; Christesen JD; Zigler DF; Cating EE; Cahoon JF; Papanikolas JM
    Nano Lett; 2014 Jun; 14(6):3079-87. PubMed ID: 24867088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime.
    Wingert MC; Chen ZC; Dechaumphai E; Moon J; Kim JH; Xiang J; Chen R
    Nano Lett; 2011 Dec; 11(12):5507-13. PubMed ID: 22112167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial adhesion of ZnO nanowires on a Si substrate in air.
    Mead JL; Wang S; Zimmermann S; Huang H
    Nanoscale; 2020 Apr; 12(15):8237-8247. PubMed ID: 32236223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of pore anisotropy on the thermal conductivity of porous Si nanowires.
    Ferrando-Villalba P; D'Ortenzi L; Dalkiranis GG; Cara E; Lopeandia AF; Abad L; Rurali R; Cartoixà X; De Leo N; Saghi Z; Jacob M; Gambacorti N; Boarino L; Rodríguez-Viejo J
    Sci Rep; 2018 Aug; 8(1):12796. PubMed ID: 30143650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects.
    Bui CT; Xie R; Zheng M; Zhang Q; Sow CH; Li B; Thong JT
    Small; 2012 Mar; 8(5):738-45. PubMed ID: 22162412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy.
    Gabriel MM; Kirschbrown JR; Christesen JD; Pinion CW; Zigler DF; Grumstrup EM; Mehl BP; Cating EE; Cahoon JF; Papanikolas JM
    Nano Lett; 2013 Mar; 13(3):1336-40. PubMed ID: 23421654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements.
    Ulbricht R; Kurstjens R; Bonn M
    Nano Lett; 2012 Jul; 12(7):3821-7. PubMed ID: 22738182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Si and Ge allotrope heterostructured nanowires: experimental evaluation of the thermal conductivity reduction.
    Ben Amor A; Djomani D; Fakhfakh M; Dilhaire S; Vincent L; Grauby S
    Nanotechnology; 2019 Sep; 30(37):375704. PubMed ID: 31195385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of Thermal Conductivity in Nanowires by Combined Engineering of Crystal Phase and Isotope Disorder.
    Mukherjee S; Givan U; Senz S; de la Mata M; Arbiol J; Moutanabbir O
    Nano Lett; 2018 May; 18(5):3066-3075. PubMed ID: 29694788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal conductivity modeling of core-shell and tubular nanowires.
    Yang R; Chen G; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1111-5. PubMed ID: 15943452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires.
    Zhou Y; Chen Y; Hu M
    Sci Rep; 2016 Apr; 6():24903. PubMed ID: 27113556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anomalous heat conduction behavior in thin finite-size silicon nanowires.
    Yang X; To AC; Tian R
    Nanotechnology; 2010 Apr; 21(15):155704. PubMed ID: 20332560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-Field Control and Imaging of Free Charge Carrier Variations in GaN Nanowires.
    Berweger S; Blanchard PT; Brubaker MD; Coakley KJ; Sanford NA; Wallis TM; Bertness KA; Kabos P
    Appl Phys Lett; 2016; 108(7):. PubMed ID: 38486617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.
    Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK
    Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties.
    Lee S; Kim K; Kang DH; Meyyappan M; Baek CK
    Nano Lett; 2019 Feb; 19(2):747-755. PubMed ID: 30636421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the measurement of relaxation times of acoustic vibrations in metal nanowires.
    Devkota T; Chakraborty D; Yu K; Beane G; Sader JE; Hartland GV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17687-17693. PubMed ID: 29938263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.